Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 13(1): 6753, 2022 11 08.
Article in English | MEDLINE | ID: mdl-36347854

ABSTRACT

Programmed death ligand-1 (PD-L1) has been recently adopted for breast cancer as a predictive biomarker for immunotherapies. The cost, time, and variability of PD-L1 quantification by immunohistochemistry (IHC) are a challenge. In contrast, hematoxylin and eosin (H&E) is a robust staining used routinely for cancer diagnosis. Here, we show that PD-L1 expression can be predicted from H&E-stained images by employing state-of-the-art deep learning techniques. With the help of two expert pathologists and a designed annotation software, we construct a dataset to assess the feasibility of PD-L1 prediction from H&E in breast cancer. In a cohort of 3,376 patients, our system predicts the PD-L1 status in a high area under the curve (AUC) of 0.91 - 0.93. Our system is validated on two external datasets, including an independent clinical trial cohort, showing consistent prediction performance. Furthermore, the proposed system predicts which cases are prone to pathologists miss-interpretation, showing it can serve as a decision support and quality assurance system in clinical practice.


Subject(s)
Breast Neoplasms , Deep Learning , Lung Neoplasms , Humans , Female , B7-H1 Antigen/metabolism , Breast Neoplasms/genetics , Biomarkers, Tumor/metabolism , Staining and Labeling , Hematoxylin , Lung Neoplasms/pathology
2.
IEEE Trans Pattern Anal Mach Intell ; 42(1): 74-85, 2020 Jan.
Article in English | MEDLINE | ID: mdl-30369438

ABSTRACT

Multidimensional scaling (MDS) is a dimensionality reduction tool used for information analysis, data visualization and manifold learning. Most MDS procedures embed data points in low-dimensional euclidean (flat) domains, such that distances between the points are as close as possible to given inter-point dissimilarities. We present an efficient solver for classical scaling, a specific MDS model, by extrapolating the information provided by distances measured from a subset of the points to the remainder. The computational and space complexities of the new MDS methods are thereby reduced from quadratic to quasi-linear in the number of data points. Incorporating both local and global information about the data allows us to construct a low-rank approximation of the inter-geodesic distances between the data points. As a by-product, the proposed method allows for efficient computation of geodesic distances.

3.
JAMA Netw Open ; 2(7): e197700, 2019 07 03.
Article in English | MEDLINE | ID: mdl-31348505

ABSTRACT

Importance: Immunohistochemistry (IHC) is the most widely used assay for identification of molecular biomarkers. However, IHC is time consuming and costly, depends on tissue-handling protocols, and relies on pathologists' subjective interpretation. Image analysis by machine learning is gaining ground for various applications in pathology but has not been proposed to replace chemical-based assays for molecular detection. Objective: To assess the prediction feasibility of molecular expression of biomarkers in cancer tissues, relying only on tissue architecture as seen in digitized hematoxylin-eosin (H&E)-stained specimens. Design, Setting, and Participants: This single-institution retrospective diagnostic study assessed the breast cancer tissue microarrays library of patients from Vancouver General Hospital, British Columbia, Canada. The study and analysis were conducted from July 1, 2015, through July 1, 2018. A machine learning method, termed morphological-based molecular profiling (MBMP), was developed. Logistic regression was used to explore correlations between histomorphology and biomarker expression, and a deep convolutional neural network was used to predict the biomarker expression in examined tissues. Main Outcomes and Measures: Positive predictive value (PPV), negative predictive value (NPV), and area under the receiver operating characteristics curve measures of MBMP for assessment of molecular biomarkers. Results: The database consisted of 20 600 digitized, publicly available H&E-stained sections of 5356 patients with breast cancer from 2 cohorts. The median age at diagnosis was 61 years for cohort 1 (412 patients) and 62 years for cohort 2 (4944 patients), and the median follow-up was 12.0 years and 12.4 years, respectively. Tissue histomorphology was significantly correlated with the molecular expression of all 19 biomarkers assayed, including estrogen receptor (ER), progesterone receptor (PR), and ERBB2 (formerly HER2). Expression of ER was predicted for 105 of 207 validation patients in cohort 1 (50.7%) and 1059 of 2046 validation patients in cohort 2 (51.8%), with PPVs of 97% and 98%, respectively, NPVs of 68% and 76%, respectively, and accuracy of 91% and 92%, respectively, which were noninferior to traditional IHC (PPV, 91%-98%; NPV, 51%-78%; and accuracy, 81%-90%). Diagnostic accuracy improved given more data. Morphological analysis of patients with ER-negative/PR-positive status by IHC revealed resemblance to patients with ER-positive status (Bhattacharyya distance, 0.03) and not those with ER-negative/PR-negative status (Bhattacharyya distance, 0.25). This suggests a false-negative IHC finding and warrants antihormonal therapy for these patients. Conclusions and Relevance: For at least half of the patients in this study, MBMP appeared to predict biomarker expression with noninferiority to IHC. Results suggest that prediction accuracy is likely to improve as data used for training expand. Morphological-based molecular profiling could be used as a general approach for mass-scale molecular profiling based on digitized H&E-stained images, allowing quick, accurate, and inexpensive methods for simultaneous profiling of multiple biomarkers in cancer tissues.


Subject(s)
Algorithms , Artificial Intelligence , Breast Neoplasms/diagnosis , Receptors, Estrogen/analysis , Tissue Array Analysis/methods , Biomarkers, Tumor/analysis , British Columbia , Feasibility Studies , Female , Humans , Immunohistochemistry/methods , Middle Aged , Predictive Value of Tests , ROC Curve , Receptor, ErbB-2/analysis , Reproducibility of Results , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...