Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ASAIO J ; 69(6): 519-526, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36763814

ABSTRACT

RT Cardiac Systems (RTCS, Raleigh, NC) is developing an intravascular percutaneous mechanical circulatory support (pMCS) device drive system for use during high-risk percutaneous coronary intervention and emergent cardiogenic shock. The proprietary pMCS device (US patent 10,780,206) consists of a miniaturized axial flow pump with an integrated motor connected via a short flexible drive system. This novel flexible drive system creates a flexible pump that is advantageous for percutaneous placement and conforming to anatomy. This design also has the benefit of not requiring a continuous external lubrication source. In this article, we present engineering development and feasibility testing of the prototype pMCS system. Computational fluid dynamics (CFD) modeling was performed to evaluate candidate blade set designs (impeller leading and trailing edges, diffuser) and predict hydrodynamic performance and hemolysis risk. Bench testing of candidate lip seal designs (radial interference, durometer, and seal angle) was evaluated for leak rate. Two 16Fr prototype devices were then fabricated and tested in a static mock flow loop. Experimental testing demonstrated 3 L/min flow against 110 mmHg and 4 L/min flow against 80 mmHg, which matched the CFD-predicted hydrodynamic performance. These results demonstrate feasibility of the engineering design and performance of the prototype devices.


Subject(s)
Heart-Assist Devices , Percutaneous Coronary Intervention , Humans , Feasibility Studies , Heart-Assist Devices/adverse effects , Hemolysis , Shock, Cardiogenic/surgery , Equipment Design
2.
Innovations (Phila) ; 10(3): 151-6, 2015.
Article in English | MEDLINE | ID: mdl-26098174

ABSTRACT

OBJECTIVE: Ventricular assist device (VAD) miniaturization is one design trend that may result in less-invasive implantation techniques and more versatility with patient selection. The MVAD System is a miniature, continuous-flow device implanted in the ventricle. The pump is capable of delivering between 0 and 7 L/min of flow at a mean arterial pressure of 75 mm Hg. The impeller was optimized from its original design to improve hydraulic performance, minimize shear regions, and enhance the impeller's radial stiffness. These studies evaluated the MVAD System with modified impeller in the preclinical setting. METHODS: This modified pump design was tested through chronic studies (n = 6) in a healthy ovine model where 4 animals were implanted for a duration of 30 ± 5 days and 2 animals were implanted for a duration of 90 ± 5 days. The pump was placed in the left ventricular apex with the outflow graft anastomosed to the descending aorta. Postoperatively, no anticoagulant or antiplatelet therapies were administered throughout the study duration. RESULTS: All 6 animals reached their elective date of kill, demonstrating no evidence of organ compromise or device-related complications. Average pump parameters did not deviate significantly, and average rotational speed, pump flow, and power consumption were 14095 ± 139 RPM, 4.1 ± 0.4 L/min, and 4.3 ± 0.1 W, respectively. Examination of pump components postexplant demonstrated no mechanical wear or thrombus formation. CONCLUSIONS: Hemocompatibility and biocompatibility of the modified MVAD System were demonstrated through pump parameters, blood chemistry panels, and histopathology analysis.


Subject(s)
Heart-Assist Devices , Miniaturization/instrumentation , Algorithms , Animals , Disease Models, Animal , Feasibility Studies , Heart Failure/therapy , Heart Ventricles , Hemoglobinometry , Humans , Materials Testing/instrumentation , Prosthesis Design/instrumentation , Prosthesis Design/methods , Sheep , Thrombosis/etiology , Thrombosis/prevention & control
3.
J Heart Lung Transplant ; 33(4): 422-8, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24388396

ABSTRACT

BACKGROUND: Minimally invasive techniques are desirable to minimize surgical trauma during left ventricular assist device (LVAD) implantation. This is particularly challenging for full-flow support. In this study, a minimally invasive implantation technique was developed for a microaxial rotary pump. The system was evaluated in a chronic sheep model. METHODS: A HeartWare MVAD (HeartWare, Miami Lakes, FL) pump (length, 50 mm; diameter, 21 mm; maximum flow, 7-8 liters/min) was combined with a novel inflow cannula, including a new flow-optimized tip. The device was implanted into sheep (range, 60-80 kg, mean, 71.6 ± 6.8 kg) through a right-sided minithoracotomy. The inflow cannula was inserted through the superior pulmonary vein, passing through the left atrium into the left ventricle. Scheduled implant period was 30 days for 8 sheep and 100 days for 3 sheep. Mean support flow was set to half of the nominal cardiac output. RESULTS: Six of 8 sheep finished the scheduled 30-day investigation period (one failed due to early non-pump-related post-operative bleeding and one due to prototype controller failure). The 3 sheep scheduled for 100 days reached the study end point. Peak pump flows of up to 6.9 liters/min were achieved. At necropsy, no signs of mitral valve lesions or thrombus formation around the cannula, the tip, or the insertion site were observed, except for valve leaflet erosion in 1 animal, where the cannula had been entangled in the sub-valvular chords due to lack of ultrasound monitoring. CONCLUSIONS: The minimally invasive implantation technique using the HeartWare MVAD pump, together with a new cannula, provided excellent results in a chronic animal model.


Subject(s)
Heart-Assist Devices , Miniaturization , Minimally Invasive Surgical Procedures , Prosthesis Design , Animals , Catheters , Equipment Failure Analysis , Female , Heart Atria/pathology , Heart Atria/surgery , Hemodynamics/physiology , Humans , Materials Testing , Mitral Valve/pathology , Mitral Valve/surgery , Sheep , Thoracotomy
4.
ASAIO J ; 60(2): 170-7, 2014.
Article in English | MEDLINE | ID: mdl-24399057

ABSTRACT

Implantation of ventricular assist devices (VADs) for the treatment of end-stage heart failure (HF) falls decidedly short of clinical demand, which exceeds 100,000 HF patients per year. Ventricular assist device implantation often requires major surgical intervention with associated risk of adverse events and long recovery periods. To address these limitations, HeartWare, Inc. has developed a platform of miniature ventricular devices with progressively reduced surgical invasiveness and innovative patient peripherals. One surgical implant concept is a transapical version of the miniaturized left ventricular assist device (MVAD). The HeartWare MVAD Pump is a small, continuous-flow, full-support device that has a displacement volume of 22 ml. A new cannula configuration has been developed for transapical implantation, where the outflow cannula is positioned across the aortic valve. The two primary objectives for this feasibility study were to evaluate anatomic fit and surgical approach and efficacy of the transapical MVAD configuration. Anatomic fit and surgical approach were demonstrated using human cadavers (n = 4). Efficacy was demonstrated in acute (n = 2) and chronic (n = 1) bovine model experiments and assessed by improvements in hemodynamics, biocompatibility, flow dynamics, and histopathology. Potential advantages of the MVAD Pump include flow support in the same direction as the native ventricle, elimination of cardiopulmonary bypass, and minimally invasive implantation.


Subject(s)
Cardiovascular Surgical Procedures/methods , Heart-Assist Devices , Hemodynamics , Prosthesis Design , Animals , Cadaver , Cattle , Disease Models, Animal , Feasibility Studies , Humans , Materials Testing , Miniaturization
SELECTION OF CITATIONS
SEARCH DETAIL
...