Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Animal ; 17(9): 100926, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37611435

ABSTRACT

Horses are traditionally used in Kazakhstan as a source of food and as working and saddle animals as well. Here, for the first time, microarray-based medium-density single nucleotide polymorphism (SNP) genotyping of six traditionally defined types and breeds of indigenous Kazakh horses was conducted to reveal their genetic structure and find markers associated with animal size and weight. The results showed that the predefined separation between breeds and sampled populations was not supported by the molecular data. The lack of genetic variation between breeds and populations was revealed by the principal component analysis, ADMIXTURE, and distance-based analyses, as well as the general population parameters expected and observed heterozygosity (He and Ho) and between-group fixation index (Fst). The analysis revealed that the studied types and breeds should be considered as a single breed, namely the 'Kazakh horse'. The comparison with previously published data on global horse breed diversity revealed the relatively high level of individual diversity of Kazakh horses in comparison with the well-known foreign breeds. The Mongolian and Tuva breeds were identified as the closest horse landraces, demonstrating similar patterns of internal variability. The genome-wide association analysis was performed for animal size and weight as the traits directly related with the meat productivity of horses. The analysis identified a set of 60 SNPs linked with horse genes involved in the regulation of processes of development of connective tissues and the bone system, neural system, immune system regulation, and other processes. The present study is novel and introduces Kazakh horses as a promising genetic source for horse breeding and selection both on the domestic and international levels.


Subject(s)
Genome-Wide Association Study , Meat , Animals , Horses/genetics , Genome-Wide Association Study/veterinary , Heterozygote , Phenotype , Genetic Structures
2.
Plants (Basel) ; 12(13)2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37447081

ABSTRACT

Sweet potato is one of the most economically important crops for addressing global food security and climate change issues, especially under conditions of extensive agriculture, such as those found in developing countries. However, osmotic stress negatively impacts the agronomic and economic productivity of sweet potato cultivation by inducing several morphological, physiological, and biochemical changes. Plants employ many signaling pathways to respond to water stress by modifying their growth patterns, activating antioxidants, accumulating suitable solutes and chaperones, and making stress proteins. These physiological, metabolic, and genetic modifications can be employed as the best indicators for choosing drought-tolerant genotypes. The main objective of sweet potato breeding in many regions of the world, especially those affected by drought, is to obtain varieties that combine drought tolerance with high yields. In this regard, the study of the physiological and biochemical features of certain varieties is important for the implementation of drought resistance measures. Adapted genotypes can be selected and improved for particular growing conditions by using suitable tools and drought tolerance-related selection criteria. By regulating genetics in this way, the creation of drought-resistant varieties may become cost-effective for smallholder farmers. This review focuses on the drought tolerance mechanisms of sweet potato, the effects of drought stress on its productivity, its crop management strategies for drought mitigation, traditional and molecular sweet potato breeding methods for drought tolerance, and the use of biotechnological methods to increase the tolerance of sweet potato to drought.

3.
Heliyon ; 9(3): e14065, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36923873

ABSTRACT

Oilseed rape (Brassica napus) is an important oil crop distributed worldwide with a broad adaptation to different climate zones. The cultivation of rapeseed is one of the most commercially viable areas in crop production. Altogether 269,093 ha of rapeseed are cultivated in Kazakhstan. However, all rapeseed cultivars and lines cultivated in Kazakhstan on an industrial scale predominantly belong to the foreign breeding system. Therefore, the formation of a diverse genetic pool for breeding new, highly productive cultivars adopted to the environmental conditions of Kazakhstan is the most important goal in country selection programs. In this work, we have developed ethyl methanesulfonate (EMS) doubled haploid mutant lines from plant material of cultivars 'Galant' and 'Kris' to broad diversity of rapeseed in Kazakhstan. The development of mutant lines was performed via embryo callusogenesis or embryo secondary callusogenesis. Mutants were investigated by Brassica90k SNP array, and we were able to locate 24,657 SNPs from 26,256 SNPs filtered by quality control on the genome assembly (Bra_napus_v2.0). Only 18,831 SNPs were assigned to the available annotated genomic features. The most frequent combination of mutations according to reference controls was adenine with guanine (70%), followed by adenine with cytosine (28.8%), and only minor fractions were cytosine with guanine (0.54%) and adenine with thymine (0.59%). We revealed 5606.27 markers for 'Kris' and 4893.01 markers for 'Galant' by mutation occurrence. Most mutation occurrences were occupied by double mutations where progenitors and offspring were homozygous by different alleles, enabling the selection of appropriate genotypes in a short period of time. Regarding the biological impact of mutations, 861 variants were reported as having a low predicted impact, with 1042 as moderate and 121 as high; all others were reported as belonging to non-coding sequences, intergenic regions, and other features with the effect of modifiers. Protein encoding genes, such as wall-associated receptor kinase-like protein 5, TAO1-like disease resistance protein, receptor-like protein 12, and At5g42460-like F-box protein, contained more than two variable positions, with an impact on their biological activities. Nevertheless, the obtained mutant lines were able to survive and reproduce. Mutant lines, which include moderate and high impact mutations in encoding genes, are a perfect pool not only for MAS but also for the investigation of the fundamental basis of protein functions. For the first time, a collection of mutant lines was developed in our country to improve the selection of local rapeseed cultivars.

4.
Methods Mol Biol ; 1620: 1-31, 2017.
Article in English | MEDLINE | ID: mdl-28540697

ABSTRACT

The polymerase chain reaction (PCR) is fundamental to molecular biology and is the most important practical molecular technique for the research laboratory. The principle of this technique has been further used and applied in plenty of other simple or complex nucleic acid amplification technologies (NAAT). In parallel to laboratory "wet bench" experiments for nucleic acid amplification technologies, in silico or virtual (bioinformatics) approaches have been developed, among which in silico PCR analysis. In silico NAAT analysis is a useful and efficient complementary method to ensure the specificity of primers or probes for an extensive range of PCR applications from homology gene discovery, molecular diagnosis, DNA fingerprinting, and repeat searching. Predicting sensitivity and specificity of primers and probes requires a search to determine whether they match a database with an optimal number of mismatches, similarity, and stability. In the development of in silico bioinformatics tools for nucleic acid amplification technologies, the prospects for the development of new NAAT or similar approaches should be taken into account, including forward-looking and comprehensive analysis that is not limited to only one PCR technique variant. The software FastPCR and the online Java web tool are integrated tools for in silico PCR of linear and circular DNA, multiple primer or probe searches in large or small databases and for advanced search. These tools are suitable for processing of batch files that are essential for automation when working with large amounts of data. The FastPCR software is available for download at http://primerdigital.com/fastpcr.html and the online Java version at http://primerdigital.com/tools/pcr.html .


Subject(s)
Computational Biology/methods , Internet , Nucleic Acid Amplification Techniques/methods , Software , Computer Simulation , Polymerase Chain Reaction/methods
5.
Plant Physiol Biochem ; 109: 36-44, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27632242

ABSTRACT

The influence of Tomato bushy stunt virus (TBSV) infection on the activity and isoformic composition of aldehyde oxidase and catalase in Nicotiana benthamiana plants was investigated. It was shown that the infection of plants with TBSV results in enhancement of leaf aldehyde oxidase (AO) isoforms AO2 and AO3. Significantly enhanced levels of superoxide radical producing activity of AO isoforms were also detected. This is the first demonstration of involvement of plant AO in defense mechanisms against viral infection. In addition, the infection caused an increased accumulation of hydrogen peroxide, compared to mock-inoculated plants. The virus infection resulted in increased activity of catalase (CAT) and superoxide dismutase (SOD) in roots and leaves of N. benthamiana. Moreover, activation of two additional CAT isoforms was observed in the leaves of plants after virus inoculation. Our findings indicate that the virus infection significantly affects enzymes responsible for the balance of ROS accumulation in plant tissue in response to pathogen attack.


Subject(s)
Aldehyde Oxidase/metabolism , Nicotiana/metabolism , Plant Proteins/metabolism , Reactive Oxygen Species/metabolism , Tombusvirus/growth & development , Blotting, Western , Catalase/metabolism , Host-Pathogen Interactions , Hydrogen Peroxide/metabolism , Isoenzymes/metabolism , Plant Diseases/virology , Plant Leaves/enzymology , Plant Leaves/metabolism , Plant Leaves/virology , Plant Proteins/genetics , Superoxide Dismutase/metabolism , Superoxides/metabolism , Nicotiana/enzymology , Nicotiana/genetics , Nicotiana/virology , Tombusvirus/physiology
6.
Virology ; 452-453: 159-65, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24606693

ABSTRACT

A next generation Tomato bushy stunt virus (TBSV) coat protein gene replacement vector system is described that can be applied by either RNA inoculation or through agroinfiltration. A vector expressing GFP rapidly yields high levels of transient gene expression in inoculated leaves of various plant species, as illustrated for Nicotiana benthamiana, cowpea, tomato, pepper, and lettuce. A start-codon mutation to down-regulate the dose of the P19 silencing suppressor reduces GFP accumulation, whereas mutations that result in undetectable levels of P19 trigger rapid silencing of GFP. Compared to existing virus vectors the TBSV system has a unique combination of a very broad host range, rapid and high levels of replication and gene expression, and the ability to regulate its suppressor. These features are attractive for quick transient assays in numerous plant species for over-expression of genes of interest, or as a sensor to monitor the efficacy of antiviral RNA silencing.


Subject(s)
Gene Transfer Techniques , Genetic Vectors/genetics , Plants/genetics , Plants/virology , Tombusvirus/genetics , Gene Expression , Gene Silencing , Gene Transfer Techniques/instrumentation , Genetic Vectors/physiology , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Plant Proteins/genetics , Plant Proteins/immunology , Plants/immunology , Plants, Genetically Modified/genetics , Plants, Genetically Modified/immunology , Plants, Genetically Modified/virology , Tombusvirus/physiology , Transgenes
7.
Virology ; 439(2): 89-96, 2013 May 10.
Article in English | MEDLINE | ID: mdl-23490050

ABSTRACT

Traditional virus inoculation of plants involves mechanical rubbing of leaves, whereas in nature viruses like Tomato bushy stunt virus (TBSV) are often infected via the roots. A method was adapted to compare leaf versus root inoculation of Nicotiana benthamiana and tomato with transcripts of wild-type TBSV (wtTBSV), a capsid (Tcp) replacement construct expressing GFP (T-GFP), or mutants not expressing the silencing suppressor P19 (TBSVΔp19). In leaves, T-GFP remained restricted to the cells immediately adjacent to the site of inoculation, unless Tcp was expressed in trans from a Potato virus X vector; while T-GFP inoculation of roots gave green fluorescence in upper tissues in the absence of Tcp. Conversely, leaf inoculation with wtTBSV or TBSVΔp19 transcripts initiated systemic infections, while upon root inoculation this only occurred with wtTBSV, not with TBSVΔp19. Evidently the contribution of Tcp or P19 in establishing systemic infections depends on the point-of-entry of TBSV in the plants.


Subject(s)
Capsid Proteins/metabolism , Plant Leaves/virology , Plant Roots/virology , Tombusvirus/physiology , Viral Proteins/metabolism , Virulence Factors/metabolism , Virus Replication , Capsid Proteins/genetics , Gene Deletion , Solanum lycopersicum/virology , Nicotiana/virology , Tombusvirus/genetics , Viral Proteins/genetics , Virulence Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...