Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 28(4)2023 Feb 13.
Article in English | MEDLINE | ID: mdl-36838756

ABSTRACT

Cotton (Gossypium hirsutum) is an economically important crop and is widely cultivated around the globe. However, the major problem of cotton is its high vulnerability to biotic and abiotic stresses. It has been around three decades since the cotton plant was genetically engineered with genes encoding insecticidal proteins (mainly Cry proteins) with an aim to protect it against insect attack. Several studies have been reported on the impact of these genes on cotton production and fiber quality. However, the metabolites responsible for conferring resistance in genetically modified cotton need to be explored. The current work aims to unveil the key metabolites responsible for insect resistance in Bt cotton and also compare the conventional multivariate analysis methods with deep learning approaches to perform clustering analysis. We aim to unveil the marker compounds which are responsible for inducing insect resistance in cotton plants. For this purpose, we employed 1H-NMR spectroscopy to perform metabolite profiling of Bt and non-Bt cotton varieties, and a total of 42 different metabolites were identified in cotton plants. In cluster analysis, deep learning approaches (linear discriminant analysis (LDA) and neural networks) showed better separation among cotton varieties compared to conventional methods (principal component analysis (PCA) and orthogonal partial least square discriminant analysis (OPLSDA)). The key metabolites responsible for inter-class separation were terpinolene, α-ketoglutaric acid, aspartic acid, stigmasterol, fructose, maltose, arabinose, xylulose, cinnamic acid, malic acid, valine, nonanoic acid, citrulline, and shikimic acid. The metabolites which regulated differently with the level of significance p < 0.001 amongst different cotton varieties belonged to the tricarboxylic acid cycle (TCA), Shikimic acid, and phenylpropanoid pathways. Our analyses underscore a biosignature of metabolites that might involve in inducing insect resistance in Bt cotton. Moreover, novel evidence from our study could be used in the metabolic engineering of these biological pathways to improve the resilience of Bt cotton against insect/pest attacks. Lastly, our findings are also in complete support of employing deep machine learning algorithms as a useful tool in metabolomics studies.


Subject(s)
Gossypium , Shikimic Acid , Animals , Gossypium/genetics , Plants, Genetically Modified/genetics , Shikimic Acid/metabolism , Pest Control, Biological , Insecta/genetics , Multivariate Analysis , Magnetic Resonance Spectroscopy , Data Analysis , Bacterial Proteins/metabolism , Endotoxins/metabolism , Hemolysin Proteins/metabolism
2.
Molecules ; 26(15)2021 Jul 30.
Article in English | MEDLINE | ID: mdl-34361796

ABSTRACT

Meat is a rich source of energy that provides high-value animal protein, fats, vitamins, minerals and trace amounts of carbohydrates. Globally, different types of meats are consumed to fulfill nutritional requirements. However, the increasing burden on the livestock industry has triggered the mixing of high-price meat species with low-quality/-price meat. This work aimed to differentiate different meat samples on the basis of metabolites. The metabolic difference between various meat samples was investigated through Nuclear Magnetic Resonance spectroscopy coupled with multivariate data analysis approaches like principal component analysis (PCA) and orthogonal partial least square-discriminant analysis (OPLS-DA). In total, 37 metabolites were identified in the gluteal muscle tissues of cow, goat, donkey and chicken using 1H-NMR spectroscopy. PCA was found unable to completely differentiate between meat types, whereas OPLS-DA showed an apparent separation and successfully differentiated samples from all four types of meat. Lactate, creatine, choline, acetate, leucine, isoleucine, valine, formate, carnitine, glutamate, 3-hydroxybutyrate and α-mannose were found as the major discriminating metabolites between white (chicken) and red meat (chevon, beef and donkey). However, inosine, lactate, uracil, carnosine, format, pyruvate, carnitine, creatine and acetate were found responsible for differentiating chevon, beef and donkey meat. The relative quantification of differentiating metabolites was performed using one-way ANOVA and Tukey test. Our results showed that NMR-based metabolomics is a powerful tool for the identification of novel signatures (potential biomarkers) to characterize meats from different sources and could potentially be used for quality control purposes in order to differentiate different meat types.


Subject(s)
Food Contamination/analysis , Meat/analysis , Metabolome , Metabolomics/methods , Amino Acids/analysis , Animals , Cattle , Chickens , Choline/analysis , Creatine/analysis , Equidae , Food Contamination/prevention & control , Goats , Humans , Lactic Acid/analysis , Least-Squares Analysis , Magnetic Resonance Spectroscopy , Mannose/analysis , Multivariate Analysis , Principal Component Analysis , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...