Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Endocrinol (Lausanne) ; 15: 1380443, 2024.
Article in English | MEDLINE | ID: mdl-38800472

ABSTRACT

Objective: This meta-analysis includes the systematic literature review and meta-analysis involving clinical trials to assess the efficacy and safety of mesenchymal stem cell (MSC) transplantation for treating T1DM and T2DM. Methods: We searched PubMed, ScienceDirect, Web of Science, clinicaltrials.gov, and Cochrane Library for "published" research from their inception until November 2023. Two researchers independently reviewed the studies' inclusion and exclusion criteria. Our meta-analysis included 13 studies on MSC treatment for diabetes. Results: The MSC-treated group had a significantly lower HbA1c at the last follow-up compared to the baseline (MD: 0.95, 95% CI: 0.33 to 1.57, P-value: 0.003< 0.05), their insulin requirement was significantly lower (MD: 0.19, 95% CI: 0.07 to 0.31, P-value: 0.002< 0.05), the level of FBG with MSC transplantation significantly dropped compared to baseline (MD: 1.78, 95% CI: -1.02 to 4.58, P-value: 0.212), the FPG level of the MSC-treated group was significantly lower (MD: -0.77, 95% CI: -2.36 to 0.81, P-value: 0.339 > 0.05), and the fasting C-peptide level of the MSC-treated group was slightly high (MD: -0.02, 95% CI: -0.07 to 0.02, P-value: 0.231 > 0.05). Conclusion: The transplantation of MSCs has been found to positively impact both types of diabetes mellitus without signs of apparent adverse effects.


Subject(s)
Mesenchymal Stem Cell Transplantation , Humans , Mesenchymal Stem Cell Transplantation/methods , Diabetes Mellitus, Type 2/therapy , Diabetes Mellitus, Type 1/therapy , Treatment Outcome , Mesenchymal Stem Cells/cytology , Diabetes Mellitus/therapy
2.
J Mol Med (Berl) ; 102(4): 537-570, 2024 04.
Article in English | MEDLINE | ID: mdl-38418620

ABSTRACT

Diabetes mellitus (DM) often causes chronic kidney damage despite best medical practices. Diabetic kidney disease (DKD) arises from a complex interaction of factors within the kidney and the whole body. Targeting specific disease-causing agents using drugs has not been effective in treating DKD. However, stem cell therapies offer a promising alternative by addressing multiple disease pathways and promoting kidney regeneration. Mesenchymal stem cells (MSCs) offer great promise due to their superior accessibility ratio from adult tissues and remarkable modes of action, such as the production of paracrine anti-inflammatory and cytoprotective substances. This review critically evaluates the development of MSC treatment for DKD as it moves closer to clinical application. Results from animal models suggest that systemic MSC infusion may positively impact DKD progression. However, few registered and completed clinical trials exist, and whether the treatments are effective in humans is still being determined. Significant knowledge gaps and research opportunities exist, including establishing the ideal source, dose, and timing of MSC delivery, better understanding of in vivo mechanisms, and developing quantitative indicators to obtain a more significant therapeutic response. This paper reviews recent literature on using MSCs in preclinical and clinical trials in DKD. Potent biomarkers related to DKD are also highlighted, which may help better understand MSCs' action in this disease progression. KEY MESSAGES: Mesenchymal stem cells have anti-inflammatory and paracrine effects in diabetic kidney disease. Mesenchymal stem cells alleviate in animal models having diabetic kidney disease. Mesenchymal stem cells possess promise for the treatment of diabetic kidney disease.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Adult , Animals , Humans , Diabetic Nephropathies/therapy , Diabetic Nephropathies/metabolism , Kidney , Mesenchymal Stem Cell Transplantation/methods , Regeneration , Anti-Inflammatory Agents/pharmacology , Mesenchymal Stem Cells/metabolism , Diabetes Mellitus/metabolism
3.
Regen Med ; 18(4): 347-361, 2023 04.
Article in English | MEDLINE | ID: mdl-36935631

ABSTRACT

Autism spectrum disorder (ASD) is a consortium of developmental conditions. As scientists have not yet identified the exact underlying cause for these disorders, it is not easy to narrow down a singular therapy to propose a reliable cure. The preponderance of research suggests that stem-cell therapy improves aspects of outcome measure scales in patients with ASD; therefore, future studies should give us more confidence in the results. This overview considers the data that have emerged from the small set of published trials conducted using different approaches in stem-cell therapy for ASD, evaluates their results and proposes additional steps that could be taken if this field of endeavor is to be pursued further.


Subject(s)
Autism Spectrum Disorder , Hematopoietic Stem Cell Transplantation , Humans , Autism Spectrum Disorder/drug therapy , Stem Cell Transplantation , Cell- and Tissue-Based Therapy
4.
Stem Cell Rev Rep ; 19(3): 651-666, 2023 04.
Article in English | MEDLINE | ID: mdl-36520408

ABSTRACT

Premature ovarian failure (POF) affects 1% of women under 40, leading to infertility. The clinical symptoms of the POF include hypoestrogenism, lack of mature follicles, hypergonadotropinism, and amenorrhea. POF can be caused due to genetic defects, autoimmune illnesses, and environmental factors. The conventional treatment of POF remains a limited success rate. Therefore, an innovative treatment strategy like the regeneration of premature ovaries by using human umbilical cord mesenchymal stem cells (hUC-MSCs) can be a choice. To summarize all the theoretical frameworks for additional research and clinical trials, this review article highlights all the results, pros, and cons of the hUC-MSCs used to treat POF. So far, the data shows promising results regarding the treatment of POF using hUC-MSCs. Several properties like relatively low immunogenicity, multipotency, multiple origins, affordability, convenience in production, high efficacy, and donor/recipient friendliness make hUC-MSCs a good choice for treating basic POF. It has been reported that hUC-MSCs impact and enhance all stages of injured tissue regeneration by concurrently stimulating numerous pathways in a paracrine manner, which are involved in the control of ovarian fibrosis, angiogenesis, immune system modulation, and apoptosis. Furthermore, some studies demonstrated that stem cell treatment could lead to hormone-level restoration, follicular activation, and functional restoration of the ovaries. Therefore, all the results in hand regarding the use of hUC-MSCs for the treatment of POF encourage researchers for further clinical trials, which will overcome the ongoing challenges and make this treatment strategy applicable to the clinic in the near future.


Subject(s)
Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Primary Ovarian Insufficiency , Humans , Female , Primary Ovarian Insufficiency/therapy , Primary Ovarian Insufficiency/etiology , Mesenchymal Stem Cell Transplantation/methods , Umbilical Cord
SELECTION OF CITATIONS
SEARCH DETAIL
...