Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Condens Matter ; 32(36): 365404, 2020 May 12.
Article in English | MEDLINE | ID: mdl-32396885

ABSTRACT

Thermally-activated phase transitions in Pt/Mn/Fe thin films were investigated by a combination of x-ray diffraction, transmission electron microscopy, secondary neutral mass spectrometry depth profiling, atomic force microscopy, and magnetic properties measurements. Post-annealing was carried out in vacuum to different temperatures up to 620 °C. Initially, at temperatures between 280 °C-450 °C first L10-MnPt is formed at the Mn/Pt interface followed by the most likely formation of metastable bcc Fe3Pt, which gets transformed by further annealing to fcc Fe3Pt and eventually to chemically ordered L12-Fe3Pt. The final product after annealing at 620 °C consists of two interesting phases, which are relevant for spintronic applications, antiferromagnetic L10-MnPt with addition of Fe and ferromagnetic L12-Fe3Pt, consistent with the initial element composition.

2.
J Phys Condens Matter ; 31(28): 285401, 2019 Jul 17.
Article in English | MEDLINE | ID: mdl-30952149

ABSTRACT

X-ray diffraction (XRD), secondary neutral mass spectrometry (SNMS) depth profiling, and electrical resistivity measurements were used to follow the phase transformations in Pt/Fe bi-layered thin films during annealing. Initially, the electrical resistivity increases linearly with temperature up to 150 °C due to the contribution of phonon scattering of the metallic Pt and Fe bilayer. Further increase of the annealing temperature leads to a steeper linear increase, which is associated with the initial formation of the chemically disordered A1-phase followed by the formation of the chemically ordered L10-FePt phase, as confirmed by XRD and SNMS studies. Finally, at about 620 °C the single L10-FePt phase has formed throughout the film. Moreover, the electrical resistivity contains also the magnetic contribution to the total resistivity. In this case, the loss in magnetic order is indicated by a change in temperature dependence of the resistivity at about 310 °C, representing the Curie temperature of the initially formed A1-FePt alloy, while the finally formed L10-FePt alloy reveals a higher magnetic transition temperature of about 410 °C. In this study, it has been demonstrated that resistometry in combination with structural and chemical analysis provides valuable information on diffusion processes, structural phase formations and its stability range, as well as on the magnetic transition temperature.

SELECTION OF CITATIONS
SEARCH DETAIL
...