Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Gels ; 9(12)2023 Nov 23.
Article in English | MEDLINE | ID: mdl-38131909

ABSTRACT

Hydrogels are three-dimensional (3D) water-swellable polymeric matrices that are used extensively in tissue engineering and drug delivery. Hydrogels can be conformed into any desirable shape using 3D bio-printing, making them suitable for personalized treatment. Among the different 3D bio-printing techniques, digital light processing (DLP)-based printing offers the advantage of quickly fabricating high resolution structures, reducing the chances of cell damage during the printing process. Here, we have used DLP to 3D bio-print biocompatible gelatin methacrylate (GelMA) scaffolds intended for bone repair. GelMA is biocompatible, biodegradable, has integrin binding motifs that promote cell adhesion, and can be crosslinked easily to form hydrogels. However, GelMA on its own is incapable of promoting bone repair and must be supplemented with pharmaceutical molecules or growth factors, which can be toxic or expensive. To overcome this limitation, we introduced zinc-based metal-organic framework (MOF) nanoparticles into GelMA that can promote osteogenic differentiation, providing safer and more affordable alternatives to traditional methods. Incorporation of this nanoparticle into GelMA hydrogel has demonstrated significant improvement across multiple aspects, including bio-printability, and favorable mechanical properties (showing a significant increase in the compressive modulus from 52.14 ± 19.42 kPa to 128.13 ± 19.46 kPa with the addition of ZIF-8 nanoparticles). The designed nanocomposite hydrogels can also sustain drug (vancomycin) release (maximum 87.52 ± 1.6% cumulative amount) and exhibit a remarkable ability to differentiate human adipose-derived mesenchymal stem cells toward the osteogenic lineage. Furthermore, the formulated MOF-integrated nanocomposite hydrogel offers the unique capability to coat metallic implants intended for bone healing. Overall, the remarkable printability and coating ability displayed by the nanocomposite hydrogel presents itself as a promising candidate for drug delivery, cell delivery and bone tissue engineering applications.

2.
Mater Horiz ; 9(7): 1850-1865, 2022 07 04.
Article in English | MEDLINE | ID: mdl-35485266

ABSTRACT

Exploring new avenues for clinical management of chronic wounds holds the key to eliminating socioeconomic burdens and health-related concerns associated with this silent killer. Engineered biomaterials offer great promise for repair and regeneration of chronic wounds because of their ability to deliver therapeutics, protect the wound environment, and support the skin matrices to facilitate tissue growth. This mini review presents recent advances in biomaterial functionalities for enhancing wound healing and demonstrates a move from sub-optimal methods to multi-functionalized treatment approaches. In this context, we discuss the recently reported biomaterial characteristics such as bioadhesiveness, antimicrobial properties, proangiogenic attributes, and anti-inflammatory properties that promote chronic wound healing. In addition, we highlight the necessary mechanical and mass transport properties of such biomaterials. Then, we discuss the characteristic properties of various biomaterial templates, including hydrogels, cryogels, nanomaterials, and biomolecule-functionalized materials. These biomaterials can be microfabricated into various structures, including smart patches, microneedles, electrospun scaffolds, and 3D-bioprinted structures, to advance the field of biomaterial scaffolds for effective wound healing. Finally, we provide an outlook on the future while emphasizing the need for their detailed functional behaviour and inflammatory response studies in a complex in vivo environment for superior clinical outcomes and reduced regulatory hurdles.


Subject(s)
Biocompatible Materials , Nanostructures , Biocompatible Materials/therapeutic use , Skin , Tissue Scaffolds/chemistry , Wound Healing/physiology
3.
Adv Healthc Mater ; 11(8): e2102088, 2022 04.
Article in English | MEDLINE | ID: mdl-35032156

ABSTRACT

Considerable progress has been made in synthesizing "intelligent", biodegradable hydrogels that undergo rapid changes in physicochemical properties once exposed to external stimuli. These advantageous properties of stimulus-triggered materials make them highly appealing to diverse biomedical applications. Of late, research on the incorporation of light-triggered nanoparticles (NPs) into polymeric hydrogel networks has gained momentum due to their ability to remotely tune hydrogel properties using facile, contact-free approaches, such as adjustment of wavelength and intensity of light source. These multi-functional NPs, in combination with tissue-mimicking hydrogels, are increasingly being used for on-demand drug release, preparing diagnostic kits, and fabricating smart scaffolds. Here, the authors discuss the atomic behavior of different NPs in the presence of light, and critically review the mechanisms by which NPs convert light stimuli into heat energy. Then, they explain how these NPs impact the mechanical properties and rheological behavior of NPs-impregnated hydrogels. Understanding the rheological behavior of nanocomposite hydrogels using different sophisticated strategies, including computer-assisted machine learning, is critical for designing the next generation of drug delivery systems. Next, they highlight the salient strategies that have been used to apply light-induced nanocomposites for diverse biomedical applications and provide an outlook for the further improvement of these NPs-driven light-responsive hydrogels.


Subject(s)
Hydrogels , Nanoparticles , Drug Delivery Systems , Hydrogels/chemistry , Materials Science , Nanoparticles/chemistry , Polymers/chemistry
4.
Drug Discov Today ; 27(4): 1156-1166, 2022 04.
Article in English | MEDLINE | ID: mdl-34839040

ABSTRACT

Diabetes mellitus is a chronic disease characterized by increased blood glucose levels, leading to damage of the nerves blood vessels, subsequently manifesting as organ failures, wounds, or ulcerations. Wounds in patients with diabetes are further complicated because of reduced cytokine responses, infection, poor vascularization, and delayed healing processes. Surface-functionalized and bioengineered nanoparticles (NPs) have recently gained attention as emerging treatment modalities for wound healing in diabetes. Here, we review emerging therapeutic NPs to treat diabetic wounds and highlight their discrete delivery mechanisms and sites of action. We further critically assess the current challenges of these nanoengineered materials for successful clinical translation and discuss their potential for growth in the clinical marketplace.


Subject(s)
Diabetes Mellitus , Nanoparticles , Diabetes Mellitus/drug therapy , Humans , Wound Healing
5.
Trends Pharmacol Sci ; 42(10): 813-828, 2021 10.
Article in English | MEDLINE | ID: mdl-34454774

ABSTRACT

Vaccines have been used to train the immune system to recognize pathogens, and prevent and treat diseases, such as cancer, for decades. However, there are continuing challenges in their manufacturing, large-scale production, and storage. Some of them also show suboptimal immunogenicity, requiring additional adjuvants and booster doses. As an alternate vaccination strategy, a new class of biomimetic materials with unique functionalities has emerged in recent years. Here, we explore the current bioengineering techniques that make use of hydrogels, modified polymers, cell membranes, self-assembled proteins, virus-like particles (VLPs), and nucleic acids to deliver and develop biomaterial-based vaccines. We also review design principles and key regulatory issues associated with their development. Finally, we critically assess their limitations, explore approaches to overcome these limitations, and discuss potential future applications for clinical translation.


Subject(s)
Biomimetic Materials , Vaccines , Biocompatible Materials , Hydrogels , Polymers
6.
Chem Soc Rev ; 50(13): 7779-7819, 2021 Jul 07.
Article in English | MEDLINE | ID: mdl-34036968

ABSTRACT

The biological purpose of DNA is to store, replicate, and convey genetic information in cells. Progress in molecular genetics have led to its widespread applications in gene editing, gene therapy, and forensic science. However, in addition to its role as a genetic material, DNA has also emerged as a nongenetic, generic material for diverse biomedical applications. DNA is essentially a natural biopolymer that can be precisely programed by simple chemical modifications to construct materials with desired mechanical, biological, and structural properties. This review critically deciphers the chemical tools and strategies that are currently being employed to harness the nongenetic functions of DNA. Here, the primary product of interest has been crosslinked, hydrated polymers, or hydrogels. State-of-the-art applications of macroscopic, DNA-based hydrogels in the fields of environment, electrochemistry, biologics delivery, and regenerative therapy have been extensively reviewed. Additionally, the review encompasses the status of DNA as a clinically and commercially viable material and provides insight into future possibilities.


Subject(s)
Biocompatible Materials/chemistry , DNA/chemistry , Hydrogels/chemistry , Polymers/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...