Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Pharmacother ; 166: 115402, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37660653

ABSTRACT

A supramolecular redox responsive nanogel (NG) with the ability to sense cancer cells and loaded with a releasing therapeutic agent was synthesized using hostguest interactions between polyethylene glycol-grafted-ß-cyclodextrin and ferrocene boronic acid. Cyclic voltammetry matched with other spectroscopy and microscopy methods provided strong indications regarding host-guest interactions and formation of the NG. Moreover, the biological properties of the NG were evaluated using fluorescence silencing, confocal laser scanning microscopy, and cell toxicity assays. Nanogel with spherical core-shell architecture and 100-200 nm sized nanoparticles showed high encapsulation efficiency for doxorubicin (DOX) and luminol (LU) as therapeutic and sensing agents. High therapeutic and sensing efficiencies were manifested by complete release of DOX and dramatic quenching of LU fluorescence triggered by 0.05 mM H2O2 (as an ROS component). The NGs showed high ROS sensitivity. Taking advantage of a high loading capacity, redox sensitivity, and biocompatibility, the NGs can be used as strong theranostic systems in inflammation-associated diseases.


Subject(s)
Hydrogen Peroxide , Precision Medicine , Nanogels , Metallocenes , Reactive Oxygen Species , Doxorubicin/pharmacology , Microscopy, Confocal
2.
Langmuir ; 37(11): 3382-3390, 2021 03 23.
Article in English | MEDLINE | ID: mdl-33691410

ABSTRACT

Two-dimensional nanomaterials decorated by metal nanoparticles have gained great interest, due to their potential applications in different areas ranging from electrochemical sensing to photothermal therapy. However, metal nanoparticles that are noncovalently immobilized on the surface of two-dimensional nanomaterials can be dissociated from their surface in the complex mediums. This challenge can be overcome by covalent attachment of nanoparticles to the surface of these platforms. In this work, MoS2 sheets are decorated by silver nanoparticles (AgNPs) through a reversible addition-fragmentation chain transfer (RAFT) reaction. Reactive centers were created on the surface of freshly exfoliated MoS2 and a two-dimensional platform with the ability of initiating the RAFT reaction was obtained. Afterwards, silver nanoparticles with acrylamide functionality were synthesized and attached on the surface of MoS2 sheets by the RAFT reaction. MoS2-AgNPs hybrids were characterized by different spectroscopy and microscopy methods as well as thermal and elemental analyses, and then they were used for the electrochemical determination of dipyridamole in aqueous solution. Taking advantage of the straightforward synthesis and the possible MoS2-AgNPs distance adjustment, a variety of hybrid systems with unique physicochemical and optoelectronic properties can be constructed by using this method.

3.
Langmuir ; 36(24): 6706-6715, 2020 06 23.
Article in English | MEDLINE | ID: mdl-32441938

ABSTRACT

While noncovalent interactions at two-dimensional nanobiointerfaces are extensively investigated, less knowledge about covalent interactions at this interface is available. In this work, boronic acid-functionalized 2D MoS2 was synthesized and its covalent multivalent interactions with bacteria and nematodes were investigated. Polymerization of glycidol by freshly exfoliated MoS2 and condensation of 2,5-thiophenediylbisboronic acid on the produced platform resulted in boronic acid-functionalized 2D MoS2. The destructive interactions between 2D MoS2 and bacteria as well as nematodes were significantly amplified by boronic acid functional groups. Because of the high antibacterial and antinematodal activities of boronic acid-functionalized 2D MoS2, its therapeutic efficacy for diabetic wound healing was investigated. The infected diabetic wounds were completely healed 10 days after treatment with boronic acid-functionalized 2D MoS2, and a normal structure for recovered tissues including different layers of skin, collagen, and blood vessels was detected.


Subject(s)
Boronic Acids , Molybdenum , Anti-Bacterial Agents
4.
Anal Chim Acta ; 1039: 51-58, 2018 Dec 18.
Article in English | MEDLINE | ID: mdl-30322552

ABSTRACT

Here, we introduce a new electrode based on Silver-filled multi-walled carbon nanotube (Ag-MWCNT) and methyltrioctyl ammonium chloride (MTOAC) for highly sensitive voltammetric measurement of Sulfamethoxazole (SMX). The electrode showed an electrocatalytic activity as it led to the diminution of the overpotential and an increase in peak current for SMX oxidation in a phosphate buffer solution (pH 6.0). Analysis of surface topography and electrochemical properties of the modified electrode was examined by TEM, EDX and EIS, respectively. Electrochemical performance of the modified electrode was investigated with cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques for determination of SMX in aqueous solution. In addition, the oxidation process was found to be dependent on the pH of the buffer solution. Under optimal conditions, a linear relationship between the oxidation current and SMX concentration was found in a range 0.05-70 µM (R2 = 0.997) with a detection limit of 0.01 µM after 2 min of accumulating time. The electrode was successfully used to quantify SMX in pharmaceutical formulations and human urine by DPV.


Subject(s)
Electrochemical Techniques , Nanocomposites/chemistry , Nanotubes, Carbon/chemistry , Silver/chemistry , Sulfamethoxazole/urine , Humans , Molecular Structure , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL
...