Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev E ; 101(6-1): 062410, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32688583

ABSTRACT

The social amoeba Dictyostelium discoideum performs chemotaxis under starvation conditions, aggregating towards clusters of cells following waves of the signaling molecule cAMP. Cells sense extracellular cAMP and produce internal caches of cAMP to be released, relaying the signal. These events lead to traveling waves of cAMP washing over the population of cells. While much research has been performed to understand the functioning of the chemotaxis network in D. discoideum, limited work has been done to link the operation of the signal relay network with the chemotaxis network to provide a holistic view of the system. We take inspiration from D. discoideum and propose a model that directly links the relaying of a chemical message to the directional sensing of that signal. Utilizing an excitable dynamical systems model that has been previously validated experimentally, we show that it is possible to have both signal amplification and perfect adaptation in a single module. We show that noise plays a vital role in chemotaxing to static gradients, where stochastic tunneling of transient bursts biases the system towards accurate gradient sensing. Moreover, this model also automatically matches its internal time scale of adaptation to the naturally occurring periodicity of the traveling chemical waves generated in the population. Numerical simulations were performed to study the qualitative phenomenology of the system and explore how the system responds to diverse dynamic spatiotemporal stimuli. Finally, we address dynamical instabilities that impede chemotactic ability in a continuum version of the model.


Subject(s)
Chemotaxis , Dictyostelium/cytology , Models, Biological , Signal Transduction
2.
Mol Cell Proteomics ; 18(4): 796-805, 2019 04.
Article in English | MEDLINE | ID: mdl-30647073

ABSTRACT

Within the last several years, top-down proteomics has emerged as a high throughput technique for protein and proteoform identification. This technique has the potential to identify and characterize thousands of proteoforms within a single study, but the absence of accurate false discovery rate (FDR) estimation could hinder the adoption and consistency of top-down proteomics in the future. In automated identification and characterization of proteoforms, FDR calculation strongly depends on the context of the search. The context includes MS data quality, the database being interrogated, the search engine, and the parameters of the search. Particular to top-down proteomics-there are four molecular levels of study: proteoform spectral match (PrSM), protein, isoform, and proteoform. Here, a context-dependent framework for calculating an accurate FDR at each level was designed, implemented, and validated against a manually curated training set with 546 confirmed proteoforms. We examined several search contexts and found that an FDR calculated at the PrSM level under-reported the true FDR at the protein level by an average of 24-fold. We present a new open-source tool, the TDCD_FDR_Calculator, which provides a scalable, context-dependent FDR calculation that can be applied post-search to enhance the quality of results in top-down proteomics from any search engine.


Subject(s)
Proteomics/methods , Algorithms , Databases, Protein , Humans , Protein Isoforms/metabolism , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...