Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Bioeng Biotechnol ; 9: 708417, 2021.
Article in English | MEDLINE | ID: mdl-34790651

ABSTRACT

Synthetically designed alternative photorespiratory pathways increase the biomass of tobacco and rice plants. Likewise, some in planta-tested synthetic carbon-concentrating cycles (CCCs) hold promise to increase plant biomass while diminishing atmospheric carbon dioxide burden. Taking these individual contributions into account, we hypothesize that the integration of bypasses and CCCs will further increase plant productivity. To test this in silico, we reconstructed a metabolic model by integrating photorespiration and photosynthesis with the synthetically designed alternative pathway 3 (AP3) enzymes and transporters. We calculated fluxes of the native plant system and those of AP3 combined with the inhibition of the glycolate/glycerate transporter by using the YANAsquare package. The activity values corresponding to each enzyme in photosynthesis, photorespiration, and for synthetically designed alternative pathways were estimated. Next, we modeled the effect of the crotonyl-CoA/ethylmalonyl-CoA/hydroxybutyryl-CoA cycle (CETCH), which is a set of natural and synthetically designed enzymes that fix CO2 manifold more than the native Calvin-Benson-Bassham (CBB) cycle. We compared estimated fluxes across various pathways in the native model and under an introduced CETCH cycle. Moreover, we combined CETCH and AP3-w/plgg1RNAi, and calculated the fluxes. We anticipate higher carbon dioxide-harvesting potential in plants with an AP3 bypass and CETCH-AP3 combination. We discuss the in vivo implementation of these strategies for the improvement of C3 plants and in natural high carbon harvesters.

2.
Methods Mol Biol ; 2328: 183-189, 2021.
Article in English | MEDLINE | ID: mdl-34251626

ABSTRACT

Plant immunity is a highly dynamic process and requires dynamic modeling to capture the events of complexity mediated by the interaction between plant host and the attacking pathogen. The events of recognition are invoked by pathogen-based epitopes, while the subversion of host defenses are orchestrated by pathogen-originated effector molecules. The pathogen constitutes an immune signaling network inside the host cells. We model plant immune dynamics by using JIMENA-package, which is a java-based genetic regulatory network (GRN) simulation framework. It can efficiently compute network behavior and system states mediated by pathogenic perturbations. Here, we describe a step-by-step protocol to introduce the application of JIMENA-package to quantify immune dynamics in plant-pathogen interaction networks.


Subject(s)
Computer Simulation , Gene Regulatory Networks/genetics , Host-Pathogen Interactions/genetics , Plant Diseases/immunology , Plant Immunity , Plants/immunology , Models, Immunological , Software
3.
Molecules ; 26(3)2021 Jan 28.
Article in English | MEDLINE | ID: mdl-33525350

ABSTRACT

Plant hormones are small regulatory molecules that exert pharmacological actions in mammalian cells such as anti-oxidative and pro-metabolic effects. Kinetin belongs to the group of plant hormones cytokinin and has been associated with modulatory functions in mammalian cells. The mammalian adenosine receptor (A2a-R) is known to modulate multiple physiological responses in animal cells. Here, we describe that kinetin binds to the adenosine receptor (A2a-R) through the Asn253 residue in an adenosine dependent manner. To harness the beneficial effects of kinetin for future human use, we assess its acute toxicity by analyzing different biochemical and histological markers in rats. Kinetin at a dose below 1 mg/kg had no adverse effects on the serum level of glucose or on the activity of serum alanine transaminase (ALT) or aspartate aminotransferase (AST) enzymes in the kinetin treated rats. Whereas, creatinine levels increased after a kinetin treatment at a dose of 0.5 mg/kg. Furthermore, 5 mg/kg treated kinetin rats showed normal renal corpuscles, but a mild degeneration was observed in the renal glomeruli and renal tubules, as well as few degenerated hepatocytes were also observed in the liver. Kinetin doses below 5 mg/kg did not show any localized toxicity in the liver and kidney tissues. In addition to unraveling the binding interaction between kinetin and A2a-R, our findings suggest safe dose limits for the future use of kinetin as a therapeutic and modulatory agent against various pathophysiological conditions.


Subject(s)
Kinetin/pharmacology , Kinetin/toxicity , Small Molecule Libraries/pharmacology , Small Molecule Libraries/toxicity , Animals , Antioxidants/physiology , Antioxidants/toxicity , Biomarkers/metabolism , Creatinine/metabolism , Cytokinins/metabolism , Glucose/metabolism , Hepatocytes/drug effects , Hepatocytes/metabolism , Humans , Kidney Glomerulus/drug effects , Kidney Glomerulus/metabolism , Kidney Tubules/drug effects , Kidney Tubules/metabolism , Liver/drug effects , Liver/metabolism , Male , Oxidation-Reduction/drug effects , Oxidative Stress/drug effects , Plant Growth Regulators/pharmacology , Plant Growth Regulators/toxicity , Rats , Receptors, Purinergic P1/metabolism
4.
Methods Mol Biol ; 1569: 141-150, 2017.
Article in English | MEDLINE | ID: mdl-28265994

ABSTRACT

Cytokinins are adenine and non-adenine derived heterogeneous class of regulatory molecules that participate in almost every aspect of plant biology. They also affect plant defense responses as well as help microbial pathogens to establish pathogenesis. The functional approaches that ensure desired and subtle modulations in the levels of plant cytokinins are highly instrumental in assessing their functions in plant immunity. Here, we describe a detailed working protocol regarding the enhanced production of cytokinins from plants that harbor isopentenyltransferase (IPT) enzyme gene under the control of 4xJERE (jasmonic acid and elicitor-responsive element) pathogen-inducible promoter. Our devised expression system is a context-dependent solution when it comes to investigating host-pathogen interactions under the modulated conditions of plant cytokinins.


Subject(s)
Cytokinins/metabolism , Host-Pathogen Interactions , Plant Growth Regulators/metabolism , Gene Expression Regulation, Plant , Host-Pathogen Interactions/immunology , Phenotype , Plant Diseases/genetics , Plant Diseases/immunology , Plant Diseases/microbiology , Plant Immunity , Plants, Genetically Modified , Signal Transduction , Transformation, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...