Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biodegradation ; 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37987937

ABSTRACT

Composting is a process of microbial degradation of organic waste and is commonly applied for waste management. This is a slow process and requires a lot of land and human resources. The present study investigated mechanical augmentation with required microbial culture for composting municipal solid waste (MSW). Thirty isolates were subjected to 16S rDNA PCR amplification and gene sequencing. The isolates' sequencing from the compost samples was processed on BLASTn. Fourteen strains were identified for further experiments. The results divulge that Empedobacter (04), Bacillus (02), Proteus (02), Lactiplantibacillus (01), Klebsiella (01), Citrobacter (01), Brevibacillus (01), E. coli (01) and one unidentified strain were growing during composting. Eleven combinations of bacterial consortium and respective additives were applied for the organic waste decomposition in the next stage, resulting in varied completion periods ranging from 3 to 14 days. Two combinations were completed within 3 days, which are considered ideal combinations for composting. The microbial consortium was significantly diverse, which is a reason for rapid biodegradation. The present study reveals that the technology will be highly feasible for municipal solid waste management in tropical/subtropical countries.

2.
Front Plant Sci ; 13: 913825, 2022.
Article in English | MEDLINE | ID: mdl-35923873

ABSTRACT

Environmental extremes such as hypersaline conditions are significant threats to agricultural productivity. The sustainable use of halophilic microbial strains was evaluated in plant in a salt stress environment. Oxygen-evolving complex (OEC), energy compartmentalization, harvesting efficiencies (LHE), specific energy fluxes (SEF), and nitrogen assimilation of oilseed crops (Sunflower cultivars) in a suboptimal environment was examined. Plants were grown in a plastic pot (15 ×18 cm2) containing sterilized (autoclaved at 120°C for 1 h) soil. Twenty-five ml suspension (107 CFU/ml) each of Bacillus cereus strain KUB-15 and KUB-27 (accession number NR 074540.1) and Bacillus licheniformis strain AAB9 (accession number MW362506), were applied via drenching method. Month-old plants were subjected to salt stress via gradual increment method. The energy compartmentalization of microbial inoculated plants exposed to salt stress revealed higher photosystem II (PSII) activity at the donor side, lesser photo-inhibition, and increased performance of oxygen-evolving complex compared to control. High potassium (K+) and low sodium (Na+) ions in treated leaves with the activated barricade of the antioxidant system stimulated by Bacillus strains favored enhanced photochemical efficiency, smooth electron transport, and lesser energy dissipation in the stressed plants. Moreover, the results reveal the increased activity of nitrite reductase (NiR) and nitrate reductase (NR) by microbial inoculation that elevated the nitrogen availability in the salt-stressed plant. The current research concludes that the application of bio-inoculants that reside in the hyper-saline environment offers substantial potential to enhance salt tolerance in sunflowers by modulating their water uptake, chlorophyll, nitrogen metabolism, and better photochemical yield.

SELECTION OF CITATIONS
SEARCH DETAIL
...