Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 25(8): 7180-7199, 2018 Mar.
Article in English | MEDLINE | ID: mdl-26300356

ABSTRACT

The solute transport model MODFLOW has become a standard tool in risk assessment and remediation design. However, particle transport models that take into account both particle agglomeration and deposition phenomena are far less developed. The main objective of the present study was to evaluate the feasibility of adapting the standard code MODFLOW/MT3D to simulate the agglomeration and transport of three different types of polymer-modified nanoscale zerovalent iron (NZVI) in one-dimensional (1-D) and two-dimensional (2-D) saturated porous media. A first-order decay of the particle population was used to account for the agglomeration of particles. An iterative technique was used to optimize the model parameters. The model provided good matches to 1-D NZVI-breakthrough data sets, with R 2 values ranging from 0.96 to 0.99, and mass recovery differences between the experimental results and simulations ranged from 0.1 to 1.8 %. Similarly, simulations of NZVI transport in the heterogeneous 2-D model demonstrated that the model can be applied to more complicated heterogeneous domains. However, the fits were less good, with the R 2 values in the 2-D modeling cases ranging from 0.75 to 0.95, while the mass recovery differences ranged from 0.7 to 6.5 %. Nevertheless, the predicted NZVI concentration contours during transport were in good agreement with the 2-D experimental observations. The model provides insights into NZVI transport in porous media by mathematically decoupling agglomeration, attachment, and detachment, and it illustrates the importance of each phenomenon in various situations. Graphical Abstract ᅟ.


Subject(s)
Computer Simulation , Iron/chemistry , Metal Nanoparticles/chemistry , Models, Chemical , Polymers/chemistry , Water Pollutants, Chemical/chemistry , Environmental Restoration and Remediation , Particle Size , Porosity , Silicon Dioxide/chemistry
2.
Environ Monit Assess ; 188(2): 104, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26790431

ABSTRACT

Sedimentation in reservoirs, in addition to reducing water storage capacity, causes serious environmental impacts including intensification of river erosion. Detection of sediment origins plays a determining role in control and prevention of sedimentation. Nowadays, with the help of studies on sedimentation and erosion, sediment origins can be detected with high accuracy. This research integrated geographic information system (GIS) and remote sensing (RS) techniques to detect the primary source of sediment to Taleghan Dam in northern Iran. After collecting samples of sediment from the basin outlet, they were divided into two parts. One part was sent to the Mineralogy Laboratory in order to determine the percentage of each mineral in the samples using X-ray. A few were sent to the Spectroscopy Laboratory to determine their spectral signature using the spectrometer. The laboratory test results determined the wavelength of the minerals. In the next step, those spots on the satellite image whose spectral reflectance fell within the spectral signature of the minerals were detected and enhanced by mixture-tuned matched filtering (MTMF) method. These spots were overlapped with the map of geological formations. Accordingly, the origin of the minerals was detected. The greatest proportion of trace minerals was found in sample 4 including 6% of Illite trace mineral, while sample 2 contains only 2% of trace minerals. Accordingly, the origin of the minerals was detected. The obtained results revealed that mudstone, red siltstone, and conglomerate formations, Karaj formation in section Poldokhtar, acidic tuffs, alcanic lavas of Karaj Formation, mudstone and gypsum of upper red formation, and Cambrian dolomites were recognized as the most possible origins of the dam sediments. These formations are vulnerable to erosion and should be conserved so as to substantially prevent the volume of sedimentation in the reservoir.


Subject(s)
Environmental Monitoring/methods , Geologic Sediments/analysis , Rivers/chemistry , Satellite Imagery , Water Pollutants/analysis , Geographic Information Systems , Geologic Sediments/chemistry , Geology , Iran
3.
Article in English | MEDLINE | ID: mdl-25763187

ABSTRACT

Originally, application of nano zero valent iron (nZVI) particles for the removal of lead (Pb(2+)) in porous media was studied. At first, stabilized nZVI (S-nZVI) was prepared and characterized, then used in batch and continuous systems. Based on the batch experiments, corresponding reaction kinetics well fitted with the pseudo-first-order adsorption model, and reaction rate ranged from 0.01 to 0.04 g/mg/min depend on solution pH and the molar ratio between Fe and Pb. In batch tests, optimal condition with more than 90% removal efficiency at 60 min was observed at a pH range of 4 to 6 and Fe/Pb ratio more than 2.5. Continuous experiments exposed that Pb(2+) remediation was as well influenced by seepage velocity, grain size, and type of porous media. The maximum Pb(2+) removal efficiency in batch and bench-scale systems were 97% and 81%, correspondingly. The results have shown the ability of S-nZVI to use in permeable reactive barriers, as an efficient adsorbent for Pb(2+), because of its excellent stability, high reducing power, and a large surface area.

4.
Environ Manage ; 42(4): 620-46, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18584238

ABSTRACT

Efficient environmental management calls for the consideration of multiple pollutants, for which two main types of transferable discharge permit (TDP) program have been described: separate permits that manage each pollutant individually in separate markets, with each permit based on the quantity of the pollutant or its environmental effects, and weighted-sum permits that aggregate several pollutants as a single commodity to be traded in a single market. In this paper, we perform a mathematical analysis of TDP programs for multiple pollutants that jointly affect the environment (i.e., interactive pollutants) and demonstrate the practicality of this approach for cost-efficient maintenance of river water quality. For interactive pollutants, the relative weighting factors are functions of the water quality impacts, marginal damage function, and marginal treatment costs at optimality. We derive the optimal set of weighting factors required by this approach for important scenarios for multiple interactive pollutants and propose using an analytical elasticity of substitution function to estimate damage functions for these scenarios. We evaluate the applicability of this approach using a hypothetical example that considers two interactive pollutants. We compare the weighted-sum permit approach for interactive pollutants with individual permit systems and TDP programs for multiple additive pollutants. We conclude by discussing practical considerations and implementation issues that result from the application of weighted-sum permit programs.


Subject(s)
Water Pollutants/analysis , Models, Theoretical , Uncertainty
5.
Environ Manage ; 41(2): 200-20, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18058167

ABSTRACT

Since the term was coined in the Brundtland report in 1987, the issue of sustainable development has been challenged in terms of quantification. Different policy options may lend themselves more or less to the underlying principles of sustainability, but no analytical tools are available for a more in-depth assessment of the degree of sustainability. Overall, there are two major schools of thought employing the sustainability concept in managerial decisions: those of measuring and those of monitoring. Measurement of relative sustainability is the key issue in bridging the gap between theory and practice of sustainability of water resources systems. The objective of this study is to develop a practical tool for quantifying and assessing the degree of relative sustainability of water quality systems based on risk-based indicators, including reliability, resilience, and vulnerability. Current work on the Karoun River, the largest river in Iran, has included the development of an integrated model consisting of two main parts: a water quality simulation subroutine to evaluate Dissolved Oxygen Biological Oxygen Demand (DO-BOD) response, and an estimation of risk-based indicators subroutine via the First Order Reliability Method (FORM) and Monte Carlo Simulation (MCS). We also developed a simple waste load allocation model via Least Cost and Uniform Treatment approaches in order to consider the optimal point of pollutants control costs given a desired reliability value which addresses DO in two different targets. The Risk-based approach developed herein, particularly via the FORM technique, appears to be an appropriately efficient tool for estimating the relative sustainability. Moreover, our results in the Karoun system indicate that significant changes in sustainability values are possible through dedicating money for treatment and strict pollution controls while simultaneously requiring a technical advance along change in current attitudes for environment protection.


Subject(s)
Conservation of Natural Resources , Rivers , Iran , Models, Theoretical , Oxygen/analysis , Risk , Water Pollution
SELECTION OF CITATIONS
SEARCH DETAIL
...