Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Avicenna J Med Biotechnol ; 10(2): 62-68, 2018.
Article in English | MEDLINE | ID: mdl-29849981

ABSTRACT

BACKGROUND: One of the most significant problems in the treatment of leukemia is the expansion of resistance to chemotherapeutic agents. Therefore, assessing the drug resistance and especially the drug resistance genes of leukemic cells is important in any treatment. The impact of Mesenchymal Stem Cells (MSCs) and hypoxic condition have been observed in the biological performance of majority of leukemic cells. METHODS: MOLT-4 cells were co-cultured with MSCs in the hypoxic condition induced by Cobalt Chloride (CoCl2) for 6 and 24 hr. Then, apoptosis of cells was analyzed using annexin-V/PI staining and expression of the drug resistance genes including MDR1, MRP, and BCRP along with apoptotic and anti-apoptotic genes, including BAX and BCL2, was evaluated by real-time PCR. RESULTS: The hypoxic condition for MOLT-4 cells co-cultured with MSCs could significantly increase the expression of MDR1 and BCRP genes (p<0.05) which are involved in drug resistance. Also, the results indicated that this condition significantly increases the expression of BCL2 (p<0.05) and reduces the apoptosis in MOLT-4 cells co-cultured with MSCs in the hypoxic condition. CONCLUSION: These effects can demonstrate the important role of hypoxia and MSCs on the biological behavior of Acute Lymphoblastic Leukemia (ALL) cells that may lead to particular treatment outcomes.

2.
Adv Pharm Bull ; 7(2): 165-177, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28761818

ABSTRACT

Hematopoiesis is a balance among quiescence, self-renewal, proliferation, and differentiation, which is believed to be firmly adjusted through interactions between hematopoietic stem and progenitor cells (HSPCs) with the microenvironment. This microenvironment is derived from a common progenitor of mesenchymal origin and its signals should be capable of regulating the cellular memory of transcriptional situation and lead to an exchange of stem cell genes expression. Mesenchymal stem cells (MSCs) have self-renewal and differentiation capacity into tissues of mesodermal origin, and these cells can support hematopoiesis through release various molecules that play a crucial role in migration, homing, self-renewal, proliferation, and differentiation of HSPCs. Studies on the effects of MSCs on HSPC differentiation can develop modern solutions in the treatment of patients with hematologic disorders for more effective Bone Marrow (BM) transplantation in the near future. However, considerable challenges remain on realization of how paracrine mechanisms of MSCs act on the target tissues, and how to design a therapeutic regimen with various paracrine factors in order to achieve optimal results for tissue conservation and regeneration. The aim of this review is to characterize and consider the related aspects of the ability of MSCs secretome in protection of hematopoiesis.

3.
Cell J ; 19(1): 127-136, 2017.
Article in English | MEDLINE | ID: mdl-28367423

ABSTRACT

OBJECTIVE: Bone marrow mesenchymal stem cells (BMMSCs) reside in the bone marrow and control the process of hematopoiesis. They are an excellent instrument for regenerative treatment and co-culture with hematopoietic stem cells (HSCs). MATERIALS AND METHODS: In this experimental study, K562 cell lines were either treated with butyric acid and co-cultured with MSCs, or cultivated in a conditioned medium from MSCs plus butyric acid for erythroid differentiation. We used the trypan blue dye exclusion assay to determine cell counts and viability in each group. For each group, we separately assessed erythroid differentiation of the K562 cell line with Giemsa stain under light microscopy, expression of specific markers of erythroid cells by flowcytometry, and erythroidspecific gene expressions by real-time polymerase chain reaction (RT-PCR). RESULTS: There was enhandced erythroid differentiation of K562 cells with butyric acid compared to the K562 cell line co-cultured with MSCs and butyric acid. Erythroid differentiation of the K562 cell line cultivated in conditioned medium with butyric acid was higher than the K562 cell line co-cultured with MSCs and butyric acid, but less than K562 cell line treated with butyric acid only. CONCLUSION: Our results showed that MSCs significantly suppressed erythropoiesis. Therefore, MSCs would not be a suitable optimal treatment strategy for patients with erythroid leukemia.

4.
Adv Pharm Bull ; 6(1): 23-29, 2016 Mar.
Article in English | MEDLINE | ID: mdl-27123414

ABSTRACT

PURPOSE: Mesenchymal stem cells (MSCs) are key components of the hematopoietic stem cells (HSCs) niche. They control the process of hematopoiesis by secreting regulatory cytokines, growth factors and expression of important cell adhesion molecules for cell-tocell interactions. In this research, we have investigated the effect of bone marrow derived MSCs on monocytic differentiation of U937 cells line. METHODS: U937 cells were cultured in both direct co-culture with MSCs and MSCs conditioned medium (C.M) driven. This study used 1,25-dihydroxyvitamin D3(VitD3) as inductor of monocytic differentiation and U937 cells treated with VitD3 morphology was examined by Wright Giemsa staining. CD14 monocytic differentiation marker was measured by flow cytometry and monocytic gene expression was assessed by real time polymerase chain reaction (RT PCR). RESULTS: The results of flow cytometric analysis showed that CD14 expression of U937 increased. The higher effect of MSCs co-culture on CD14 expression in U937 cells was observed, compared to the conditioned medium. Among ten monocytic related genes which were screened that was observed increase in 5 genes in which CXCR4 and CSF2RA showed significant increase. CONCLUSION: The results obtained show that MSCs have supportive effect on the monocytic differentiation of U937 cells. However, a distinct mechanism of that remains unclear.

5.
Adv Pharm Bull ; 5(3): 299-304, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26504750

ABSTRACT

Bone marrow microenvironment contains cellular and acellular compartments. The cellular compartment includes hematopoietic stem cells, mesenchymal stem cells and some other stromal cell types, while the acellular compartment is composed of scaffold proteins known as the extra cellular matrix. Direct cell-cell contact as well as cytokines secreted by mesenchymal stem cells during coculture of hematopoietic stem cells and mesenchymal stem cells play a critical role in hematopoiesis, and determines the fate of hematopoietic stem cells. Several studies have demonstrated the impact of mesenchymal stem cells on self-renewal, expansion, proliferation and differentiation of hematopoietic stem cells in vitro, which have shown different and contradictory results. In this paper, we will investigate the effect of mesenchymal stem cells on differentiation of hematopoietic stem cells in vitro.

SELECTION OF CITATIONS
SEARCH DETAIL
...