Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 3526-3530, 2021 11.
Article in English | MEDLINE | ID: mdl-34892000

ABSTRACT

Intraoperative tumor localization in a deflated lung in minimally invasive surgery (MIS) is challenging as the lung cannot be manually palpated through small incisions. To do so remotely, an articulated multisensory imaging device combining tactile and ultrasound sensors was developed. It visualizes the surface tactile map and the depth of the tissue. However, with little maneuverability in MIS, localizing tumors using instrumented palpation is both tedious and inefficient. In this paper, a texture- based image guidance system that classifies tactile-guided ultrasound texture regions and provides beliefs on their types is proposed. The resulting interactive feedback allows directed palpation in MIS. A k-means classifier is used to first cluster gray-level co-occurrence matrix (GLCM)-based texture features of the ultrasound regions, followed by hidden Markov model-based belief propagation to establish confidence about the clustered features observing repeated patterns. When the beliefs converge, the system autonomously detects tumor and nontumor textures. The approach was tested on 20 ex vivo soft tissue specimens in a staged MIS. The results showed that with guidance, tumors in MIS could be localized with 98% accuracy, 99% sensitivity, and 97% specificity.Clinical Relevance- Texture-based image guidance adds efficiency and control to instrumented palpation in MIS. It renders fluidity and accuracy in image acquisition using a hand-held device where fatigue from prolonged handling affects imaging quality.


Subject(s)
Minimally Invasive Surgical Procedures , Neoplasms , Feedback , Humans , Palpation , Touch
2.
Int J Comput Assist Radiol Surg ; 16(9): 1587-1594, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34089123

ABSTRACT

PURPOSE: Learning to use a surgical microscope is a fundamental step in otolaryngology training; however, there is currently no objective method to teach or assess this skill. Tympanostomy tube placement is a common otologic procedure that requires skilled use of a surgical microscope. This study was designed to (1) implement metrics capable of evaluating microscope use and (2) establish construct validity. STUDY DESIGN: This was a prospective cohort study. METHODS: Eight otolaryngology trainees and three otolaryngology experts were asked to use a microscope to insert a tympanostomy tube into a cadaveric myringotomy in a standardized setting. Microscope movements were tracked in a three-dimensional space, and tracking metrics were applied to the data. The procedure was video-recorded and then analyzed by blinded experts using operational metrics. Results from both groups were compared, and discriminatory metrics were determined. RESULTS: The following tracking metrics were identified as discriminatory between the trainee and expert groups: total completion time, operation time, still time, and jitter (movement perturbation). Many operational metrics were found to be discriminatory between the two groups, including several positioning metrics, optical metrics, and procedural metrics. CONCLUSIONS: Performance metrics were implemented, and construct validity was established for a subset of the proposed metrics by discriminating between expert and novice participants. These discriminatory metrics could form the basis of an automated system for providing feedback to residents during training while using a myringotomy surgical simulator. Additionally, these metrics may be useful in guiding a standardized teaching and evaluation methodology for training in the use of surgical microscopes.


Subject(s)
Middle Ear Ventilation , Otolaryngology , Benchmarking , Clinical Competence , Humans , Otolaryngology/education , Prospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...