Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 14(12)2022 Jun 07.
Article in English | MEDLINE | ID: mdl-35745884

ABSTRACT

Enhanced awareness of the environment and environmental conservation has inspired researchers to search for replacements for the use of volatile organic compounds in the processing of polymers. Recently, ionic liquids have been utilized as solvents for solvating natural and synthetic biodegradable polymers since they are non-volatile, recyclable, and non-flammable. They have also been utilized to prepare electrospun fibers from biodegradable polymers. In this concise review, examples of natural and synthetic biodegradable polymers that are generally employed as materials for the preparation of electrospun fibers are shown. In addition, examples of ionic liquids that are utilized in the electrospinning of biodegradable polymers are also displayed. Furthermore, the preparations of biodegradable polymer electrospinning solutions utilizing ionic liquids are demonstrated. Additionally, the properties of electrospun biodegradable polymer fibers assisted by different ionic liquids are also concisely reviewed. Besides this, the information acquired from this review provides a much deeper understanding of the preparation of electrospinning solutions and the essential properties of electrospun biodegradable polymer fibers. In summary, this concise review discovered that different functions (solvent or additive) of ionic liquids could provide distinct properties to electrospun fibers.

2.
Polymers (Basel) ; 13(22)2021 Nov 14.
Article in English | MEDLINE | ID: mdl-34833227

ABSTRACT

This study aims to investigate the effect of AgNPs on the mechanical, thermal and antimicrobial activity of kenaf/HDPE composites. AgNP material was prepared at different contents, from 0, 2, 4, 6, 8 to 10 wt%, by an internal mixer and hot compression at a temperature of 150 °C. Mechanical (tensile, modulus and elongation at break), thermal (TGA and DSC) and antimicrobial tests were performed to analyze behavior and inhibitory effects. The obtained results indicate that the effect of AgNP content displays improved tensile and modulus properties, as well as thermal and antimicrobial properties. The highest tensile stress is 5.07 MPa and was obtained at 10wt, TGA showed 10 wt% and had improved thermal stability and DSC showed improved stability with increased AgNP content. The findings of this study show the potential of incorporating AgNP concentrations as a secondary substitute to improve the performance in terms of mechanical, thermal and antimicrobial properties without treatment. The addition of AgNP content in polymer composite can be used as a secondary filler to improve the properties.

3.
Polymers (Basel) ; 13(16)2021 Aug 05.
Article in English | MEDLINE | ID: mdl-34451137

ABSTRACT

Biodegradable polymers are an exceptional class of polymers that can be decomposed by bacteria. They have received significant interest from researchers in several fields. Besides this, biodegradable polymers can also be incorporated with fillers to fabricate biodegradable polymer composites. Recently, a variety of ionic liquids have also been applied in the fabrication of the polymer composites. In this brief review, two types of fillers that are utilized for the fabrication of biodegradable polymer composites, specifically organic fillers and inorganic fillers, are described. Three types of synthetic biodegradable polymers that are commonly used in biodegradable polymer composites, namely polylactic acid (PLA), polybutylene succinate (PBS), and polycaprolactone (PCL), are reviewed as well. Additionally, the influence of two types of ionic liquid, namely alkylimidazolium- and alkylphosphonium-based ionic liquids, on the mechanical, thermal, and chemical properties of the polymer composites, is also briefly reviewed. This review may be beneficial in providing insights into polymer composite investigators by enhancing the properties of biodegradable polymer composites via the employment of ionic liquids.

4.
Molecules ; 26(1)2021 Jan 04.
Article in English | MEDLINE | ID: mdl-33406627

ABSTRACT

An enhancement of environmental concern lately has improved the awareness of researchers in employing eco-friendly solvents for processing biopolymers. Recently, ionic liquids have been utilized to prepare biopolymer blends as they are non-volatile and recyclable. Biopolymers such as cellulose, chitin, chitosan, keratin, lignin, silk, starch, and zein are widely used for the preparation of biopolymer blends via dissolution in ionic liquids, followed by coagulation procedure. In this concise review, three types of ionic liquids based on imidazolium cations combined with different counter anions that are frequently utilized to prepare biopolymer blends are described. Moreover, three types of biopolymer blends that are prepared in ionic liquids were classified, specifically polysaccharide/polysaccharide blends, polysaccharide/polypeptide blends, and polysaccharide/bioplastic blends. The physicochemical properties of biopolymer blends prepared in different imidazolium-based ionic liquids are also concisely reviewed. This paper may assist the researchers in the polymer blend area and generate fresh ideas for future research.


Subject(s)
Biopolymers/chemistry , Ionic Liquids/chemistry , Solvents/chemistry , Chemical Phenomena
5.
Materials (Basel) ; 13(8)2020 Apr 17.
Article in English | MEDLINE | ID: mdl-32316400

ABSTRACT

Polybutylene succinate (PBS)/rice starch (RS) blends were prepared via the hot-melt extrusion technique through the usage of a twin-screw extruder without and containing ionic liquid-based surfactants (ILbS). Two types of ILbS were used, specifically, 1-dodecyl-3-methylimidazolium trifluoromethanesulfonate, [C12mim][OTf] and 1-dodecyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [C12mim][NTf2] were mixed into the PBS/RS blends at the different contents (0-8 wt.%). The tensile and flexural results showed that the blends containing ILbS have a high tensile extension and tensile energy compared to the blend without ILbS. The blends containing ILbS also have a high flexural extension compared with the blend without ILbS. The blends containing [C12mim][NTf2] have a significant improvement in the tensile energy (up to 239%) and flexural extension (up to 17%) in comparison with the blends containing [C12mim][OTf]. The FTIR spectra demonstrated that the presence of ILbS in the blends generated the intermolecular interactions (ion-dipole force and hydrophobic-hydrophobic interaction) between PBS and RS. The DSC results exhibited that the melting points of the prepared blends are decreased with the addition of ILbS. However, the TGA results showed that the thermal decomposition of the blends containing ILbS are higher than the blend without ILbS. The values of decomposition temperature were 387.4 °C, 381.8 °C, and 378.6 °C of PBS/RS-[C12mim][NTf2], PBS/RS-[C12mim][OTf], and PBS/RS, respectively. In conclusion, the ILbS could significantly improve the physicochemical properties of the PBS/RS blends by acting as a compatibilizer.

6.
Materials (Basel) ; 6(2): 682-698, 2013 Feb 22.
Article in English | MEDLINE | ID: mdl-28809334

ABSTRACT

An ionic liquid, 1-n-butyl-3-methylimidazolium chloride (BmimCl) was blended with urea at 1:1 mole ratio to create a BmimCl/Urea mixture. The agarose/talc composite films containing the BmimCl/Urea mixture were then acquired through a gelation method. The weight ratio of agarose and talc was fixed at 4:1, while the content of BmimCl/Urea was varied from 0 to 10 wt % relative to the overall weight of the composite films. The tensile stress and modulus results showed the optimum BmimCl/Urea content in the composite film lies at 8 wt %. The talc particles are embedded in the agarose matrix and there are no pullouts for the composite films containing BmimCl/Urea as demonstrated by SEM micrographs. The addition of BmimCl/Urea increased the glass transition temperature of the composite films, however, the thermal decomposition temperature decreased drastically. FTIR and FT-Raman spectra indicated the existence of interaction between agarose and talc, which improves their interfacial adhesion. As a conclusion, a BmimCl/Urea mixture can be utilized as a coupling agent for agarose/talc composite films.

SELECTION OF CITATIONS
SEARCH DETAIL
...