Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Vavilovskii Zhurnal Genet Selektsii ; 28(1): 74-79, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38465250

ABSTRACT

Study of RNA-protein interactions and identification of RNA targets are among the key aspects of understanding RNA biology. Currently, various methods are available to investigate these interactions with, RNA immunoprecipitation (RIP) being the most common. The search for RNA targets has largely been conducted using antibodies to an endogenous protein or to GFP-tag directly. Having to be dependent on the expression level of the target protein and having to spend time selecting highly specific antibodies make immunoprecipitation complicated. Expression of the GFP-fused protein can lead to cytotoxicity and, consequently, to improper recognition or degradation of the chimeric protein. Over the past few years, multifunctional tags have been developed. SNAP-tag and HaloTag allow the target protein to be studied from different perspectives. Labeling of the fusion protein with custom-made fluorescent dyes makes it possible to study protein expression and to localize it in the cell or the whole organism. A high-affinity substrate has been created to allow covalent binding by chimeric proteins, minimizing protein loss during protein isolation. In this paper, a HaloTag-based method, which we called Halo-RPD (HaloTag RNA PullDown), is presented. The proposed protocol uses plants with stable fusion protein expression and Magne® HaloTag® magnetic beads to capture RNA-protein complexes directly from the cytoplasmic lysate of transgenic Arabidopsis thaliana plants. The key stages described in the paper are as follows: (1) preparation of the magnetic beads; (2) tissue homogenization and collection of control samples; (3) precipitation and wash of RNA-protein complexes; (4) evaluation of protein binding efficiency; (5) RNA isolation; (6) analysis of the RNA obtained. Recommendations for better NGS assay designs are provided.

2.
Vavilovskii Zhurnal Genet Selektsii ; 26(4): 349-358, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35860676

ABSTRACT

Rapeseed (Brassica napus L.) and turnip rape (B. rapa L. subsp. campestris (L.)) are important agricultural plants widely used for food, fodder and technical purposes and as green manure. Over the past decades, a large number of perspective varieties that are being currently cultivated in every region of Russia have been developed. To increase the breeding eff iciency and facilitate the seed production, modern molecular-genetic techniques should be introduced as means to estimate species and varietal diversity. The objective of the presented research study was to investigate DNA polymorphism of the rapeseed and turnip rape varieties developed at Federal Williams Research Center of Forage Production and Agroecology and detect informative markers for varietal identif ication and genetic certif ication. To genotype 18 gDNA samples, 42 and 25 combinations of respective SSR and SRAP primers were used. The results obtained demonstrate that SRAP markers were more effective for polymorphism analysis: 36 % of the tested markers revealed genetic polymorphism compared with only 16.7 % of microsatellite loci. Molecular markers to detect differences at interspecif ic and intervarietal levels have also been found. For the investigated set, such microsatellite loci as Na12A02, Ni2C12, Ni02-D08a, Ra02-E01, Ni03H07а and SRAP-marker combinations as F13-R9, Me4- R7, F11-Em2, F10-R7, F9-Em2 and F9-R8 proved to be informative. Application of the two marker techniques made it possible to detect a higher level of DNA polymorphism in plants of different types (spring and winter varieties) if compared against the intervarietal differences within a species or a group. According to Nei's genetic diversity index, in the cluster of winter rapeseed, VIK 2 and Gorizont varieties had the longest genetic distance, and in the spring cluster, these were Novosel and Veles. A high level of similarity was found between Vikros and Bizon winter rapeseed varieties. The results obtained have a high practical value for varietal specif ication of seed material and genetic certif ication of rapeseed and turnip rape varieties.

3.
Biochemistry (Mosc) ; 83(11): 1369-1379, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30482148

ABSTRACT

Plant cold shock domain proteins (CSDPs) are DNA/RNA-binding proteins. CSDPs contain the conserved cold shock domain (CSD) in the N-terminal part and a varying number of the CCHC-type zinc finger (ZnF) motifs alternating with glycine-rich regions in the C-terminus. CSDPs exhibit RNA chaperone and RNA-melting activities due to their nonspecific interaction with RNA. At the same time, there are reasons to believe that CSDPs also interact with specific RNA targets. In the present study, we used three recombinant CSDPs from the saltwater cress plant (Eutrema salsugineum) - EsCSDP1, EsCSDP2, EsCSDP3 with 6, 2, and 7 ZnF motifs, respectively, and showed that their nonspecific interaction with RNA is determined by their C-terminal fragments. All three proteins exhibited high affinity to the single-stranded regions over four nucleotides long within RNA oligonucleotides. The presence of guanine in the single- or double-stranded regions was crucial for the interaction with CSDPs. Complementation test using E. coli BX04 cells lacking four cold shock protein genes (ΔcspA, ΔcspB, ΔcspE, ΔcspG) revealed that the specific binding of plant CSDPs with RNA is determined by CSD.


Subject(s)
Brassicaceae , Cold Shock Proteins and Peptides , Plant Proteins , RNA, Plant , Amino Acid Motifs , Brassicaceae/chemistry , Brassicaceae/genetics , Brassicaceae/metabolism , Cold Shock Proteins and Peptides/chemistry , Cold Shock Proteins and Peptides/genetics , Cold Shock Proteins and Peptides/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Genetic Complementation Test , Plant Proteins/chemistry , Plant Proteins/genetics , Plant Proteins/metabolism , Protein Domains , RNA, Plant/chemistry , RNA, Plant/genetics
4.
J Plant Physiol ; 208: 128-138, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27940414

ABSTRACT

A comparative study was performed to analyze the effect of cold acclimation on improving the resistance of Arabidopsis thaliana, Eutrema salsugineum and Eutrema botschantzevii plants to salt stress. Shoot FW, sodium and potassium accumulation, metabolite content, expression of proton pump genes VAB1, VAB2,VAB3, VP2, HA3 and genes encoding ion transporters SOS1, HKT1, NHX1, NHX2, NHX5 located in the plasma membrane or tonoplast were determined just after the cold treatment and the onset of the salt stress. In the same cold-acclimated E. botschantzevii plants, the Na+ concentration after salt treatment was around 80% lower than in non-acclimated plants, whereas the K+ concentration was higher. As a result of cold acclimation, the expression of, VAB3, NHX2, NHX5 genes and of SOS1, VP2, HA3 genes was strongly enhanced in E. botschantzevii and in E. salsugineum plants correspondently. None of the 10 genes analyzed showed any expression change in A. thaliana plants after cold acclimation. Altogether, the results indicate that cold-induced adaptation to subsequent salt stress exists in the extremophytes E. botschantzevii and to a lesser extend in E. salsugineum and is absent in Arabidopsis. This phenomenon may be attributed to the increased expression of ion transporter genes during cold acclimation in the Eutrema species.


Subject(s)
Acclimatization , Brassicaceae/physiology , Potassium/metabolism , Proton Pumps/metabolism , Sodium/metabolism , Arabidopsis/physiology , Cold Temperature , Plant Proteins/genetics , Plant Proteins/metabolism , Proton Pumps/genetics , Salt Tolerance , Stress, Physiological
SELECTION OF CITATIONS
SEARCH DETAIL
...