Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 17(11)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38894028

ABSTRACT

The compaction of asphalt pavement is a crucial step to ensure its service life. Although intelligent compaction technology can monitor compaction quality in real time, its application to individual asphalt surface courses still faces limitations. Therefore, it is necessary to study the compaction mechanism of asphalt pavements from the particle level to optimize intelligent compaction technology. This study constructed an asphalt pavement compaction model using the Discrete Element Method (DEM). First, the changes in pavement smoothness during the compaction process were analyzed. Second, the changes in the angular velocity of the mixture and the triaxial angular velocity (TAV) of the mortar, aggregates, and mixture during vibratory compaction were examined. Finally, the correlations between the TAV amplitude and the coordination number (CN) amplitude with the compaction degree of the mixture were investigated. This study found that vibratory compaction can significantly reduce asymmetric wave deformation, improving pavement smoothness. The mixture primarily rotates in the vertical plane during the first six passes of vibratory compaction and within the horizontal plane during the seventh pass. Additionally, TAV reveals the three-dimensional dynamic rotation characteristics of the particles, and the linear relationship between its amplitude and the pavement compaction degree aids in controlling the compaction quality of asphalt pavements. Finally, the linear relationship between CN amplitude and pavement compaction degree can predict the stability of the aggregate structure. This study significantly enhances quality control in pavement compaction and advances intelligent compaction technology development.

2.
Mar Drugs ; 22(5)2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38786593

ABSTRACT

α7 nicotinic acetylcholine receptors (nAChRs) are mainly distributed in the central nervous system (CNS), including the hippocampus, striatum, and cortex of the brain. The α7 nAChR has high Ca2+ permeability and can be quickly activated and desensitized, and is closely related to Alzheimer's disease (AD), epilepsy, schizophrenia, lung cancer, Parkinson's disease (PD), inflammation, and other diseases. α-conotoxins from marine cone snail venom are typically short, disulfide-rich neuropeptides targeting nAChRs and can distinguish various subtypes, providing vital pharmacological tools for the functional research of nAChRs. [Q1G, ΔR14]LvΙB is a rat α7 nAChRs selective antagonist, modified from α-conotoxin LvΙB. In this study, we utilized three types of fluorescein after N-Hydroxy succinimide (NHS) activation treatment: 6-TAMRA-SE, Cy3 NHS, and BODIPY-FL NHS, labeling the N-Terminal of [Q1G, ΔR14]LvΙB under weak alkaline conditions, obtaining three fluorescent analogs: LvIB-R, LvIB-C, and LvIB-B, respectively. The potency of [Q1G, ΔR14]LvΙB fluorescent analogs was evaluated at rat α7 nAChRs expressed in Xenopus laevis oocytes. Using a two-electrode voltage clamp (TEVC), the half-maximal inhibitory concentration (IC50) values of LvIB-R, LvIB-C, and LvIB-B were 643.3 nM, 298.0 nM, and 186.9 nM, respectively. The stability of cerebrospinal fluid analysis showed that after incubation for 12 h, the retention rates of the three fluorescent analogs were 52.2%, 22.1%, and 0%, respectively. [Q1G, ΔR14]LvΙB fluorescent analogs were applied to explore the distribution of α7 nAChRs in the hippocampus and striatum of rat brain tissue and it was found that Cy3- and BODIPY FL-labeled [Q1G, ΔR14]LvΙB exhibited better imaging characteristics than 6-TAMARA-. It was also found that α7 nAChRs are widely distributed in the cerebral cortex and cerebellar lobules. Taking into account potency, imaging, and stability, [Q1G, ΔR14]LvΙB -BODIPY FL is an ideal pharmacological tool to investigate the tissue distribution and function of α7 nAChRs. Our findings not only provide a foundation for the development of conotoxins as visual pharmacological probes, but also demonstrate the distribution of α7 nAChRs in the rat brain.


Subject(s)
Brain , Conotoxins , Xenopus laevis , alpha7 Nicotinic Acetylcholine Receptor , Animals , alpha7 Nicotinic Acetylcholine Receptor/metabolism , Conotoxins/pharmacology , Conotoxins/chemistry , Rats , Brain/metabolism , Brain/drug effects , Oocytes/drug effects , Oocytes/metabolism , Nicotinic Antagonists/pharmacology , Fluorescent Dyes , Rats, Sprague-Dawley , Male , Female
3.
Transl Psychiatry ; 14(1): 159, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38519470

ABSTRACT

Exercise is a potential treatment to improve sleep quality in middle-aged and elderly individuals. Understanding exercise-induced changes in functional plasticity of brain circuits that underlie improvements in sleep among middle-aged and older adults can inform treatment of sleep problems. The aim of the study is to identify the effects of a 12-week exercise program on sleep quality and brain functional connectivity in middle-aged and older adults with insomnia. The trial was registered with Chinese Clinical Trial Register (ChiCTR2000033652). We recruited 84 healthy sleepers and 85 individuals with insomnia. Participants with insomnia were assigned to receive either a 12-week exercise intervention or were placed in a 12-week waitlist control condition. Thirty-seven middle-aged and older adults in the exercise group and 30 in the waitlist group completed both baseline and week 12 assessments. We found that middle-aged and older adults with insomnia showed significantly worse sleep quality than healthy sleepers. At the brain circuit level, insomnia patients showed decreased connectivity in the widespread motor network. After exercise intervention, self-reported sleep was increased in the exercise group (P < 0.001) compared to that in the waitlist group. We also found increased functional connectivity of the motor network with the cerebellum in the exercise group (P < 0.001). Moreover, we observed significant correlations between improvement in subjective sleep indices and connectivity changes within the motor network. We highlight exercise-induced improvement in sleep quality and functional plasticity of the aging brain.


Subject(s)
Sleep Initiation and Maintenance Disorders , Aged , Humans , Middle Aged , Brain/diagnostic imaging , Exercise , Exercise Therapy , Sleep , Sleep Initiation and Maintenance Disorders/therapy , Treatment Outcome
4.
Materials (Basel) ; 16(23)2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38068176

ABSTRACT

To investigate the void mesostructure in porous asphalt mixtures (PA), computed tomography (CT) and Avizo were utilized to scan and reconstruct the three-dimensional (3D) void model of PA-16 specimens. The void mesostructure of the specimen was quantitatively characterized through the anisotropy evaluation index. The equivalent pore network model (PNM) was extracted using the medial axis method. Based on the PNM model, the topological structure of the specimen and the morphological characteristics of the connected pores were analyzed. The results showed that the void anisotropy evaluation method can reflect the microscopic morphology of voids in porous asphalt mixtures. The cross-sectional porosity of representative elementary volume (REV) is mainly distributed between 20% and 25%, and about 90% of the macropores have a diameter between 0.5 mm and 3 mm. The distribution of cross-sectional porosity is uneven along the REV height direction. As the smallest cross-section of the seepage path, the equivalent radius of the throat is mainly between 0.1 mm and 1.5 mm, which is much smaller than the equivalent radius of the pore. The topological structure of pores is quite different, and their coordination numbers are mainly concentrated within 18. The pores with coordination numbers 1 to 10 constitute the main body of the pores inside REV, accounting for over 98% of the total number of pores. In addition, the permeability calculation results show that there is a significant difference in the permeability of each axis of REV compared to the total permeability of the superpave gyratory compactor (SGC) specimen, which illustrates that the permeability distribution presents an obvious spatial anisotropy. This study effectively reveals the heterogeneity of the 3D void morphology of porous asphalt mixtures, and it provides a reference for a better understanding of the void flow rules in drainage pavements.

5.
Materials (Basel) ; 16(2)2023 Jan 12.
Article in English | MEDLINE | ID: mdl-36676508

ABSTRACT

The dynamic modulus is a key property determining the short- and long-term performance of asphalt pavement, and its strong dependence on confining pressure and material density (mixture compactness) has been clearly indicated in the literature. It is always challenging to reproduce three-dimensional in situ stress conditions in the laboratory. To alleviate this difficulty, in this study, a convenient experimental setup was developed, in which the lateral confinement was made present and variable as a concomitant reaction of the surrounding materials to the vertical loading. Three dense-graded mixtures were prepared to a set of four different densities and then subjected to the confined dynamic modulus test. The results indicated a significant dependence of the confined modulus on the three factors of temperature, frequency, and compactness and that the mixture with coarser gradation demonstrated a less sensitivity to these parameters. A mathematical model was developed for the dynamic modulus master curve unifying these factors by means of horizontal shifting due to the time-temperature superposition principle (validated against the variable confinement at different compactness) and the vertical shift factor as a function of reduced frequency and compactness. The adequacy of the model was demonstrated using the experimental data, and its potential application in field pavement compaction was discussed.

6.
Mar Drugs ; 20(3)2022 Mar 09.
Article in English | MEDLINE | ID: mdl-35323499

ABSTRACT

The α7 nicotinic acetylcholine receptor (nAChR) is widely distributed in the central and peripheral nervous systems and is closely related to a variety of nervous system diseases and inflammatory responses. The α7 nAChR subtype plays a vital role in the cholinergic anti-inflammatory pathway. In vivo, ACh released from nerve endings stimulates α7 nAChR on macrophages to regulate the NF-κB and JAK2/STAT3 signaling pathways, thereby inhibiting the production and release of downstream proinflammatory cytokines and chemokines. Despite a considerable level of recent research on α7 nAChR-mediated immune responses, much is still unknown. In this study, we used an agonist (PNU282987) and antagonists (MLA and α-conotoxin [A10L]PnIA) of α7 nAChR as pharmacological tools to identify the molecular mechanism of the α7 nAChR-mediated cholinergic anti-inflammatory pathway in RAW264.7 mouse macrophages. The results of quantitative PCR, ELISAs, and transcriptome analysis were combined to clarify the function of α7 nAChR regulation in the inflammatory response. Our findings indicate that the agonist PNU282987 significantly reduced the expression of the IL-6 gene and protein in inflammatory macrophages to attenuate the inflammatory response, but the antagonists MLA and α-conotoxin [A10L]PnIA had the opposite effects. Neither the agonist nor antagonists of α7 nAChR changed the expression level of the α7 nAChR subunit gene; they only regulated receptor function. This study provides a reference and scientific basis for the discovery of novel α7 nAChR agonists and their anti-inflammatory applications in the future.


Subject(s)
Aconitine/analogs & derivatives , Anti-Inflammatory Agents/pharmacology , Benzamides/pharmacology , Bridged Bicyclo Compounds/pharmacology , Conotoxins/pharmacology , Nicotinic Agonists/pharmacology , Nicotinic Antagonists/pharmacology , alpha7 Nicotinic Acetylcholine Receptor/agonists , alpha7 Nicotinic Acetylcholine Receptor/antagonists & inhibitors , Aconitine/pharmacology , Animals , Cell Survival/drug effects , Cytokines/metabolism , Gene Expression Regulation/drug effects , Interleukin-6/genetics , Interleukin-6/metabolism , Lipopolysaccharides/pharmacology , Mice , RAW 264.7 Cells , alpha7 Nicotinic Acetylcholine Receptor/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...