Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Publication year range
1.
Appl Biochem Biotechnol ; 194(8): 3706-3720, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35499692

ABSTRACT

Batch experiments were performed to evaluate the biohydrogen and biomethane production by co-digestion of chicken manure and food waste in a two-stage mesophilic fermentation process. Results showed that no hydrogen was produced in the first stage of sole chicken manure fermentation, while methane yield was 247.3 mL·g-1-VS. By comparison, the co-digestion process with food waste proportions of 50-85% obtained hydrogen yields of 15.5-57.5 mL·g-1-VS, and the methane yields and maximum specific methane production rates were also improved by 7.0-16.7% and 80%, respectively. Moreover, the highest hydrogen and methane yields were achieved during sole food waste fermentation process. The acetate was the main volatile fatty acid (VFA) produced during sole chicken manure fermentation process in the first stage. Statistical analysis revealed that hydrogen production from co-digestion process and sole food waste fermentation process followed the n-butyrate-type pathway. Meanwhile, it should be noticed that the co-fermentation of chicken manure and food waste had antagonistic effects on the hydrogen fermentation, implying that there might be some inhibition factors existing in chicken manure or produced during the co-fermentation process. At the beginning of methane fermentation, the VFA profiles were similar to those at the end of hydrogen fermentation, and the main VFA compositions changed to acetate and propionate in the latter period of methane production. The volatile solid removal efficiencies were also promoted in co-digestion process compared with sole chicken manure digestion, which were increased by 9.7-14.4% with food waste proportions of 50-80%.


Subject(s)
Manure , Refuse Disposal , Anaerobiosis , Animals , Bioreactors , Chickens , Fatty Acids, Volatile , Fermentation , Food , Hydrogen/metabolism , Methane , Refuse Disposal/methods
2.
Anim Biosci ; 34(12): 1940-1950, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34474535

ABSTRACT

OBJECTIVE: The objective of this study was to explore the effects of maize straw treated with calcium oxide (CaO) and various moisture, on the composition and molecular structure of the fiber, and gas production by fermentation in an in vitro rumen environment. METHODS: The experiment used 4×3 Factorial treatment. Maize straws were treated with 4 concentrations of CaO (0%, 3%, 5%, and 7% of dry straw weight) and 3 moisture contents (40%, 50%, and 60%). Scanning electron microscopy, Fourier transform infrared spectroscopy and X-ray fluorescence spectroscopy were employed to measure the surface texture, secondary molecular structure of carbohydrate, and calcium (Ca) content of the maize straw, respectively. The correlation of secondary molecular structures and fiber components of maize straw were analyzed by CORR procedure of SAS 9.2. In vitro rumen fermentation was performed for 6, 12, 24, 48, and 72 h to measure gas production. RESULTS: Overall, the moisture factor had no obvious effect on the experimental results. Neutral detergent fiber (NDF), acid detergent fiber, acid detergent lignin, hemicellulose and cellulose contents decreased (p<0.05) with increasing concentrations of CaO treatment. Surface and secondary molecular structure of maize straw were affected by various CaO and moisture treatments. NDF had positive correlation (p<0.01) with Cell-H (H, height), Cell-A (A, area), CHO-2-H. Hemicellulose had positive correlation (p<0.01) with Lignin-H, Lignin-A, Cell-H, Cell-A. Ca content of maize straw increased as the concentration of CaO was increased (p<0.01). Gas production was highest in the group treated with 7% CaO. CONCLUSION: CaO can adhere to the surface of the maize straw, and then improve the digestibility of the maize straw in ruminants by modifying the structure of lignocellulose and facilitating the maize straw for microbial degradation.

3.
Guang Pu Xue Yu Guang Pu Fen Xi ; 35(8): 2124-9, 2015 Aug.
Article in Chinese | MEDLINE | ID: mdl-26672279

ABSTRACT

In recent years, the food safety and quality has always been a serious issue. Therefore, it is urgent to develop a rapid and widely available method to determine the quality of food. Due to high spectral resolution, good spectral selectivity and good ability of spectrogram analysis, the technology of two-dimensional (2D) correlation spectroscopy is an effective method for solving three major problems encountered by the conventional one-dimensional (1D) spectrum: low selectivity of the spectra, difficulty in extracting the information of the spectral feature and difficulty in spectrogram analysis. Therefore, 2D correlation spectroscopy, which is suited to distinguish similar samples hardly distinguished by the conventional 1D spectroscopy, has been successfully applied in many complex biological systems. The developmental process, the experimental way to obtain spectrum, the fundamental mathematical principle and the properties of 2D correlation spectroscopy were introduced in this paper. At the same time, it is pointed out that the origin of weak characteristic bands of substance can be verified in terms of the positive or negative corss peaks in synchronous 2D correlation spectrum combined with the existence or inexistence of corss peaks in asynchronous 2D correlation spectrum. The application of 2D near-infrared, mid-infrared, fluorescence, and raman correlation spectroscopy in the detection of food quality and adulteration, concentrated specifically on diary product, wine, oil, meat, honey, and rice were reviewed. Finally, the limitations and future development prospects were pointed out.


Subject(s)
Food Analysis/methods , Food Quality , Spectrum Analysis
4.
Guang Pu Xue Yu Guang Pu Fen Xi ; 34(8): 2098-101, 2014 Aug.
Article in Chinese | MEDLINE | ID: mdl-25474942

ABSTRACT

Based on Euclidian distances between synchronous two-dimensional infrared correlation spectra, in terms of the average Euclidian distances between unknown samples and "extreme samples", and average intra- and inter-Euclidian distances of samples in the calibration set, a new method for the discrimination of adulterated milk was proposed. Sixteen pure milk samples were collected and 16 adulterated milk samples with urea (0.01-0.3 g x L(-1)), and 16 adulterated milk samples with melamine (0.01-0.3 g x L(-1)) samples were prepared, respectively. The IR absorption spectra of all samples were measured at room temperature. The synchronous two-dimensional correlation spectra were generated from concentration-dependent spectral variation of adulterant in milk. The Euclidian distances were calculated between synchronous two-dimensional infrared correlation spectra of all samples. Then, the classification models were built respectively for adulterated milk with urea, and adiulterated milk with melamine. The "extreme samples", average intra- and inter-Euclidian distances were determined. Finally, the unknown samples in prediction set were predicted using constructed models in terms of classification rules of adulterated milk. The classification accuracy rates for pure milk and adulterated milk were 100%. The effectiveness of the proposed method was verified. The results obtained in this study revealed that synchronous two-dimensional infrared correlation spectra in combination with Euclidian distance has a feasible potential to discriminate adulterated milk and pure milk.


Subject(s)
Food Contamination/analysis , Milk , Animals , Models, Theoretical , Triazines/analysis , Urea/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...