Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Sci (Weinh) ; : e2403592, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39023171

ABSTRACT

Endocrine-resistant ER+HER2- breast cancer (BC) is particularly aggressive and leads to poor clinical outcomes. Effective therapeutic strategies against endocrine-resistant BC remain elusive. Here, analysis of the RNA-sequencing data from ER+HER2- BC patients receiving neoadjuvant endocrine therapy and spatial transcriptomics analysis both show the downregulation of innate immune signaling sensing cytosolic DNA, which primarily occurs in endocrine-resistant BC cells, not immune cells. Indeed, compared with endocrine-sensitive BC cells, the activity of sensing cytosolic DNA through the cGAS-STING pathway is attenuated in endocrine-resistant BC cells. Screening of kinase inhibitor library show that this effect is mainly mediated by hyperactivation of AKT1 kinase, which binds to kinase domain of TBK1, preventing the formation of a trimeric complex TBK1/STING/IRF3. Notably, inactivation of cGAS-STING signaling forms a positive feedback loop with hyperactivated AKT1 to promote endocrine resistance, which is physiologically important and clinically relevant in patients with ER+HER2- BC. Blocking the positive feedback loop using the combination of an AKT1 inhibitor with a STING agonist results in the engagement of innate and adaptive immune signaling and impairs the growth of endocrine-resistant tumors in humanized mice models, providing a potential strategy for treating patients with endocrine-resistant BC.

2.
Nat Cell Biol ; 24(1): 88-98, 2022 01.
Article in English | MEDLINE | ID: mdl-35027735

ABSTRACT

The accumulation of lipid peroxides is recognized as a determinant of the occurrence of ferroptosis. However, the sensors and amplifying process of lipid peroxidation linked to ferroptosis remain obscure. Here we identify PKCßII as a critical contributor of ferroptosis through independent genome-wide CRISPR-Cas9 and kinase inhibitor library screening. Our results show that PKCßII senses the initial lipid peroxides and amplifies lipid peroxidation linked to ferroptosis through phosphorylation and activation of ACSL4. Lipidomics analysis shows that activated ACSL4 catalyses polyunsaturated fatty acid-containing lipid biosynthesis and promotes the accumulation of lipid peroxidation products, leading to ferroptosis. Attenuation of the PKCßII-ACSL4 pathway effectively blocks ferroptosis in vitro and impairs ferroptosis-associated cancer immunotherapy in vivo. Our results identify PKCßII as a sensor of lipid peroxidation, and the lipid peroxidation-PKCßII-ACSL4 positive-feedback axis may provide potential targets for ferroptosis-associated disease treatment.


Subject(s)
Coenzyme A Ligases/metabolism , Ferroptosis/physiology , Lipid Peroxidation/physiology , Protein Kinase C beta/metabolism , Animals , CRISPR-Cas Systems/genetics , Cell Line, Tumor , Gene Knockout Techniques , Humans , Immunotherapy/methods , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Neoplasms/therapy , Phosphorylation , Protein Kinase C beta/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...