Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ecol ; : e17323, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38506493

ABSTRACT

Ostrinia furnacalis is a disreputable herbivorous pest that poses a serious threat to corn crops. Phototaxis in nocturnal moths plays a crucial role in pest prediction and control. Insect opsins are the main component of insect visual system. However, the inherent molecular relationship between phototactic behaviour and vision of insects remains a mystery. Herein, three opsin genes were identified and cloned from O. furnacalis (OfLW, OfBL, and OfUV). Bioinformatics analysis revealed that all opsin genes had visual pigment (opsin) retinal binding sites and seven transmembrane domains. Opsin genes were distributed across different developmental stages and tissues, with the highest expression in adults and compound eyes. The photoperiod-induced assay elucidated that the expression of three opsin genes in females were higher during daytime, while their expression in males tended to increase at night. Under the sustained darkness, the expression of opsin genes increased circularly, although the increasing amplitude in males was lower when compared with females. Furthermore, the expression of OfLW, OfBL, and OfUV was upregulated under green, blue, and ultraviolet light, respectively. The results of RNA interference showed that the knockout of opsin genes decreased the phototaxis efficiency of female and male moths to green, blue, and ultraviolet light. Our results reveal that opsin genes are involved in the phototactic behaviour of moths, providing a potential target gene for pest control and a basis for further investigation on the phototactic behaviour of Lepidoptera insects.

2.
Philos Trans R Soc Lond B Biol Sci ; 377(1847): 20210035, 2022 03 28.
Article in English | MEDLINE | ID: mdl-35125001

ABSTRACT

Palaeozoic acritarchs mostly represent organic-walled cysts of marine phytoplankton, and therefore, as primary producers, played an important role in the evolution of marine ecosystems. In this study, we use a selection of the most abundant acritarch taxa from the Cambrian and Ordovician of China to understand the evolution of the palaeoecological patterns of the phytoplankton over the period. The taxa are attributed to 40 easily distinguishable morphotypes, of which the precise palaeoenvironmental distribution from 60 localities is available. By placing the 40 morphotypes on inshore-offshore transects it can be concluded that acritarch microfloras were limited to inshore environments during the early Cambrian, and progressively extended from inshore environments to offshore marine habitats during the later parts of the Cambrian and towards the Early Ordovician, with a prominent shift near the Cambrian-Ordovician boundary, confirming the onset of the 'Ordovician plankton revolution'. In addition, the acritarch morphotypes evolved from low-diversity assemblages in the early Cambrian, dominated by simple spherical forms with limited ornamentation and simple process structures, to highly diverse assemblages with very complex morphologies in the Early and Middle Ordovician. During the Ordovician, the complex acritarch assemblages occupied most marine habitats, with palaeoecological distribution patterns similar to modern dinoflagellates. This article is part of the theme issue 'The impact of Chinese palaeontology on evolutionary research'.


Subject(s)
Ecosystem , Fossils , Biological Evolution , Paleontology , Phytoplankton
SELECTION OF CITATIONS
SEARCH DETAIL
...