Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Publication year range
2.
BMC Complement Med Ther ; 23(1): 358, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37817130

ABSTRACT

BACKGROUND: Lipopolysaccharide (LPS)-induced dysfunction of pancreatic ß-cells leads to impaired insulin (INS) secretion. Astragalus polysaccharide (APS) is a bioactive heteropolysaccharide extracted from Astragalus membranaceus and is a popular Chinese herbal medicine. This study aimed to elucidate the mechanisms by which APS affects INS secretion from ß-cells under LPS stress. METHODS: Rat insulinoma (INS-1) cells were treated with LPS at a low, medium, or high concentration of APS. Glucose-stimulated insulin secretion (GSIS) was evaluated using an enzyme-linked immunosorbent assay (ELISA). Transcriptome sequencing was used to assess genome-wide gene expression. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis was used to determine the signaling pathways affected by APS. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was performed to evaluate the gene expression of glucose transporter 2 (GLUT2), glucokinase (GCK), pancreatic duodenal homeobox-1 (PDX-1), and INS. Western blot analysis was used to detect the protein expression of phosphorylated protein kinase B (p-Akt), total Akt (t-Akt), phosphorylated mammalian target of rapamycin (p-mTOR), total mTOR (t-mTOR), and GLUT2. RESULTS: LPS decreased GLUT2, GCK, PDX-1, and INS expression and reduced GSIS. These LPS-induced decreases in gene expression and GSIS were restored by APS treatment. In addition, transcriptome sequencing in combination with KEGG enrichment analysis revealed changes in the INS signaling pathway following APS treatment. LPS decreased p-Akt and p-mTOR expression, which was restored by APS treatment. The restorative effects of APS on GSIS as well as on the expression of GLUT2, GCK, PDX-1, and INS were abolished by treatment with the Akt inhibitor MK2206 or the mTOR inhibitor rapamycin (RPM). CONCLUSIONS: APS restored GSIS in LPS-stimulated pancreatic ß-cells by activating the Akt/mTOR/GLUT2 signaling pathway.


Subject(s)
Lipopolysaccharides , Proto-Oncogene Proteins c-akt , Rats , Animals , Insulin Secretion , Lipopolysaccharides/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Sirolimus , Glucose/metabolism , Polysaccharides/pharmacology , TOR Serine-Threonine Kinases/metabolism , Glucose Transport Proteins, Facilitative/metabolism , Mammals/metabolism
3.
Arch Pharm (Weinheim) ; 356(12): e2300416, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37737557

ABSTRACT

In light of the cocrystal structure of ceritinib with anaplastic lymphoma kinase (ALK)WT protein, a series of novel 2,4-diarylaminopyrimidine analogs (L1-L25) bearing a typical piperidinyl-4-ol moiety were designed and synthesized with improved biological and physicochemical properties. Satisfyingly, most compounds demonstrated moderate to excellent antitumor effects with IC50 values below 5 µM on ALK-positive Karpas299 and H2228 cells. In particular, L6 bearing the 1-(6-methoxy-pyridin-2-yl)-4-(morpholinomethyl)piperidinyl-4-ol moiety was detected as the optimal compound against ALK-dependent cell lines of Karpas299 (0.017 µM) and H2228 cells (0.052 µM), in company with encouraging ALK enzyme inhibition (ALKWT , IC50 = 1.8 nM). In addition, L6 was also capable of inhibiting ALK-resistant mutations, including ALKL1196M (3.9 nM) and ALKG1202R (5.2 nM). Remarkably, L6 typically repressed colony formation and migration of H2228 cells in a dose-dependent manner. Meanwhile, acridine orange-ethidium bromide staining analysis indicated that the proapoptotic effect of L6 was better than that of ceritinib at the same concentration (50 nM). Ultimately, the binding patterns of L6 to ALKWT and ALKG1202R were ideally established, which further confirmed the structural basis in accordance with the structure-activity relationship analysis.


Subject(s)
Antineoplastic Agents , Pyrimidines , Structure-Activity Relationship , Cell Proliferation , Pyrimidines/pharmacology , Pyrimidines/chemistry , Sulfones/pharmacology , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Mutation , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry
4.
Article in English | MEDLINE | ID: mdl-37046194

ABSTRACT

AIMS: The study aims to find a new functional additive for diabetic liver injury. BACKGROUND: It is well-established that type 2 diabetes mellitus (T2DM) is a metabolic disease with multiple complications and places a significant health and economic burden on modern society. Linarin is a natural flavonoid isolated from Asteraceae and Lamiaceae, which has beneficial effects in preventing and treating metabolic diseases such as nonalcoholic steatohepatitis and diabetes. OBJECTIVE: We aimed to investigate the pharmacological effect and underlying mechanism of linarin on T2DM-associated liver injury in vivo and in vitro. METHODS: Using a high-glucose and high-palmitic acid-induced hepatocyte injury model and a type 2 diabetic rat model. Following linarin treatment, serum biochemical parameters, liver histology, and lipid profiles of rats were examined. Oxidative stress index and inflammatory response were detected in vivo and in vitro. The expression level of AKR1B1 in rat liver tissues and in vitro cells was detected by western blot and by real-time fluorescent quantitative PCR. RESULTS: The present study found that linarin could prevent oxidative stress and inflammation. In high-fat-fed diabetic rats, linarin administration (15, 30, and 60 mg/kg/day) reduced hepatic lipid accumulation, oxidative stress, and inflammation. Linarin (20 µM) significantly alleviated oxidative stress, inflammation, and apoptosis induced by high glucose combined with palmitic acid in LX-2 cells. Western blotting and overexpression experiments showed that these effects were related to AKR1B1 inhibition in vivo and in vitro. CONCLUSION: This study indicated that linarin could protect against liver injury in T2DM by alleviating oxidative stress and inflammation mediated by AKR1B1 and may be a promising additive for diabetic liver injury therapy.

5.
Comb Chem High Throughput Screen ; 26(3): 576-588, 2023.
Article in English | MEDLINE | ID: mdl-35692142

ABSTRACT

BACKGROUND: The competing endogenous RNA (ceRNA) network plays an important role in the occurrence and development of a variety of diseases. This study aimed to construct a ceRNA network related to exosomes in diabetic retinopathy (DR). METHODS: We explored the Gene Expression Omnibus (GEO) database and then analyzed the RNAs of samples to obtain differentially expressed lncRNAs (DELs), miRNAs (DEMs) and mRNAs (DEGs) alongside the progress of DR. Next, Gene Set Enrichment Analysis (GSEA) analysis of DEGs, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of up-DEGs were performed. In addition, a ceRNA network related to exosomes in DR was constructed on the base of DELs, DEMs and DEGs. Finally, the function of the ceRNA network was explored by GO and KEGG enrichment analysis. RESULTS: Through our analysis, 267 DELs (93 up and 174 down), 114 DEMs (64 up and 50 down) and 2368 DEGs (1252 up and 1116 down) were screened. The GSEA analysis results show that these genes were mainly related to cytokine-cytokine receptor interaction, hippo signaling pathway and JAK-STAT signaling pathway. The GO and KEGG results show that these up-DEGs were mainly enriched in viral gene expression, components of ribosomes, mineral absorption, Wntprotein binding, and TGF-ß signaling pathway. Besides, a ceRNA network, including 15 lncRNAs (e.g., C1orf145, FGF14-IT1, and PRNT), 3 miRNAs (miR-10a-5p, miR-1297 and miR-507) and 11 mRNAs (NCOR2, CHAC1 and LIX1L, etc.) was constructed. Those 5 lncRNAs were up-regulated, 1 miRNA was down-regulated and 5 mRNAs were up-regulated in DR, while 10 lncRNAs were downregulated, 2 miRNAs were up-regulated and 6 mRNAs were down-regulated in DR. CONCLUSION: The novel ceRNA network that we constructed will provide new insights into the underlying molecular mechanisms of exosomes in DR.


Subject(s)
Diabetes Mellitus , Diabetic Retinopathy , Exosomes , MicroRNAs , RNA, Long Noncoding , Humans , Diabetic Retinopathy/genetics , Exosomes/genetics , RNA, Long Noncoding/genetics , MicroRNAs/genetics , RNA, Messenger/genetics
6.
J Integr Med ; 19(6): 545-554, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34686466

ABSTRACT

OBJECTIVE: To investigate effects of berberine (BBR) on cholesterol synthesis in HepG2 cells with free fatty acid (FFA)-induced steatosis and to explore the underlying mechanisms. METHODS: A steatosis cell model was induced in HepG2 cell line fed with FFA (0.5 mmol/L, oleic acid:palmitic acid = 2:1), and then treated with three concentrations of BBR; cell viability was assessed with cell counting kit-8 assays. Lipid accumulation in cells was observed through oil red O staining and total cholesterol (TC) content was detected by TC assay. The effects of BBR on cholesterol synthesis mediators were assessed by Western blotting and quantitative polymerase chain reaction. In addition, both silent information regulator 1 (SIRT1) and forkhead box transcription factor O1 (FoxO1) inhibitors were employed for validation. RESULTS: FFA-induced steatosis was successfully established in HepG2 cells. Lipid accumulation and TC content in BBR groups were significantly lower (P < 0.05, P < 0.01), associated with significantly higher mRNA and protein levels of SIRT1(P < 0.05, P < 0.01), significantly lower sterol regulatory element-binding protein 2 (SREBP2) and 3-hydroxy 3-methylglutaryl-CoA reductase levels (P < 0.05, P < 0.01), as well as higher Acetyl-FoxO1 protein level (P < 0.05, P < 0.01) compared to the FFA only group. Both SIRT1 inhibitor SIRT1-IN-1 and FoxO1 inhibitor AS1842856 blocked the BBR-mediated therapeutic effects. Immunofluorescence showed that the increased SIRT1 expression increased FoxO1 deacetylation, and promoted its nuclear translocation. CONCLUSION: BBR can mitigate FFA-induced steatosis in HepG2 cells by activating SIRT1-FoxO1-SREBP2 signal pathway. BBR may emerge as a potential drug candidate for treating nonalcoholic hepatic steatosis.


Subject(s)
Berberine , Non-alcoholic Fatty Liver Disease , Berberine/pharmacology , Cholesterol , Forkhead Box Protein O1/genetics , Humans , Non-alcoholic Fatty Liver Disease/drug therapy , Sirtuin 1/genetics , Sterol Regulatory Element Binding Proteins
7.
J Mol Neurosci ; 70(12): 2015-2019, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32529538

ABSTRACT

In clinical practices, glioblastomas (GBM) in some cases can be misdiagnosed as sarcoidosis. This study aimed to develop a biomarker to distinguish GBM from sarcoidosis. In this study, we found that PSMG3-AS1 was upregulated in plasma of GBM patients in comparison with that in sarcoidosis patients and healthy controls. Receiver operating characteristic (ROC) curve analysis showed that upregulation of PSMG3-AS1 effectively separated GBM patients from sarcoidosis patients and healthy controls. In GBM cells, overexpression of PSMG3-AS1 led to downregulated miR-34a and increased methylation of miR-34a gene. In addition, overexpression of PSMG3-AS1 reduced the inhibitory effects of miR-34a on GBM cell proliferation. In conclusion, overexpression of PSMG3-AS1 distinguishes GBM patients from patients with sarcoidosis, and PSMG3-AS1 may promote GBM cell proliferation by downregulating miR-34a through methylation.


Subject(s)
Biomarkers, Tumor/blood , Glioblastoma/blood , Sarcoidosis/blood , Aged , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cell Line, Tumor , Cell Proliferation , Cells, Cultured , Diagnosis, Differential , Female , Glioblastoma/diagnosis , Glioblastoma/genetics , Glioblastoma/metabolism , Humans , Male , MicroRNAs/genetics , MicroRNAs/metabolism , Middle Aged , Sarcoidosis/diagnosis , Sarcoidosis/genetics , Sarcoidosis/metabolism , Up-Regulation
8.
J Cardiovasc Pharmacol ; 76(2): 246-254, 2020 08.
Article in English | MEDLINE | ID: mdl-32433360

ABSTRACT

Cardiac hypertrophy causes heart failure and is associated with hyperglycemia in patients with diabetes mellitus. Mibefradil, which acts as a T-type calcium channel blocker, exerts beneficial effects in patients with heart failure. In this study, we explored the effects and mechanism of mibefradil on high-glucose-induced cardiac hypertrophy in H9c2 cells. H9c2 cells were incubated in a high-glucose medium and then treated with different concentrations of mibefradil in the presence or absence of the Akt inhibitor MK2206 or mTOR inhibitor rapamycin. Cell size was evaluated through immunofluorescence, and mRNA expression of cardiac hypertrophy markers (atrial natriuretic peptide, brain natriuretic peptide, and ß-myosin heavy chain) was assessed by using quantitative real-time polymerase chain reaction. Changes in the expression of p-PI3K, p-Akt, and p-mTOR were evaluated using Western blotting, and autophagosome formation was detected using transmission electron microscopy. Our results indicate that mibefradil reduced the size of H9c2 cells, decreased mRNA expression of atrial natriuretic peptide, brain natriuretic peptide, and ß-myosin heavy chain, and decreased the level of autophagic flux. However, MK2206 and rapamycin induced autophagy and reversed the effects of mibefradil on high-glucose-induced H9c2 cells. In conclusion, mibefradil ameliorated high-glucose-induced cardiac hypertrophy by activating the PI3K/Akt/mTOR pathway and inhibiting excessive autophagy. Our study shows that mibefradil can be used therapeutically to ameliorate cardiac hypertrophy in patients with diabetes mellitus.


Subject(s)
Autophagy/drug effects , Calcium Channel Blockers/pharmacology , Cardiomegaly/prevention & control , Glucose/toxicity , Mibefradil/pharmacology , Myocytes, Cardiac/drug effects , Phosphatidylinositol 3-Kinase/metabolism , Proto-Oncogene Proteins c-akt/metabolism , TOR Serine-Threonine Kinases/metabolism , Animals , Atrial Natriuretic Factor/genetics , Atrial Natriuretic Factor/metabolism , Cardiomegaly/chemically induced , Cardiomegaly/enzymology , Cardiomegaly/pathology , Cell Line , Cell Size/drug effects , Myocytes, Cardiac/enzymology , Myocytes, Cardiac/ultrastructure , Myosin Heavy Chains/genetics , Myosin Heavy Chains/metabolism , Natriuretic Peptide, Brain/genetics , Natriuretic Peptide, Brain/metabolism , Phosphorylation , Rats , Signal Transduction
9.
Zhong Xi Yi Jie He Xue Bao ; 10(8): 886-93, 2012 Aug.
Article in Chinese | MEDLINE | ID: mdl-22883405

ABSTRACT

OBJECTIVE: To observe the effects of ursolic acid (UA) on insulin resistance and cell differentiation in 3T3-L1 adipocytes and to explore the mechanisms. METHODS: 3T3-L1 adipocytes were cultured in Dulbecco's modified Eagle's medium (DMEM) supplemented with glucose (25 mmol/L) and insulin (10(-6) mol/L) to induce insulin resistance. After culture, glucose consumption of the adipocytes was detected by glucose oxidase method and glucose uptake was detected by using tritium-marked glucose. Drug concentration for following test was determined through detecting the effects of different concentrations of UA on the activity of 3T3-L1 adipocytes with insulin resistance by methyl thiazolyl tetrazolium (MTT) staining. 3T3-L1 adipocytes with insulin resistance were cultured with DMEM, rosiglitazone, and low- and high-dose UA, and then, glucose uptake and differentiation of 3T3-L1 adipocytes were detected. Finally, real-time fluorescence quantitative polymerase chain reaction and Western blot methods were used to detect the effects of UA on expressions of adipocyte lipid binding protein (aP2), c-Cbl-associated protein (CAP) and matrix metalloproteinase-1 (MMP-1) in 3T3-L1 cells with insulin resistance. RESULTS: After dealing with high glucose/hyperinsulin for 24 h, insulin resistance was induced successfully in the 3T3-L1 adipocytes. The concentrations of UA were defined to be 4 to 20 µmol/L. Compared with the model group, the glucose uptake was significantly increased in the rosiglitazone group and groups treated with low- and high-dose UA (P<0.01). The differentiation levels of 3T3-L1 adipocytes in the UA groups were lower than those in the control group and the rosiglitazone group. Effects of UA on the expressions of aP2 and MMP-1 were not obvious, but UA could up-regulate expression of CAP both in mRNA and protein levels (P<0.01). CONCLUSION: Low- and high-dose UA can improve the glycometabolism and differentiation of 3T3-L1 adipocytes with insulin resistance by up-regulating the expression of CAP.


Subject(s)
Adipocytes/drug effects , Adipocytes/metabolism , Insulin Resistance , Triterpenes/pharmacology , 3T3-L1 Cells/drug effects , Adipocytes/cytology , Animals , Cell Differentiation , Insulin/metabolism , Matrix Metalloproteinase 13/metabolism , Mice , Ursolic Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...