Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 447: 130799, 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-36680900

ABSTRACT

Nanoscale zero-valent iron (nZVI) shows high effectiveness in the catalyzed removal of contaminants in wastewater treatment. However, the uncontrolled interfacial electron transfer behavior and formation of surface iron oxide (FeOx) layer led to severe electron wasting and occasionally form highly toxic intermediates. Here, we constructed magnetic mesoporous SiO2 shell on surface of nZVI to stimulate a magnetic spatial confinement effect and regulate the electron transfer pattern. Therein, Fe atom facilely spread out from the nZVI core, orderly release electron to surface adsorbed H2O molecule, which is efficiently transformed into active hydrogen (H*). Meanwhile, in-situ Raman revealed that Fe atoms were involved in the formation of penetrable γ-FeOOH rather than FeOx layer, enabling the continuous inward diffusion of H2O and outward diffusion of H* . Employing the catalyzed removal of halogenated phenols as demo reaction, the presence of magnetic mesoporous SiO2 shell utilized the reaction between electrons and H2O to switch the reaction pathway from the reduction/oxidation hybrid process to hydrodehalogantion, and increased the conversion of halogenated phenols-to-phenols by 5.53 times. This study shows the forehand of improving the decontamination performance of nZVI through sophisticated designed surface coating, as well as fine regulating the environmental behavior of magnetic material via micro-magnetic field.

2.
Sci Total Environ ; 784: 147190, 2021 Aug 25.
Article in English | MEDLINE | ID: mdl-33895519

ABSTRACT

This study investigated heteroaggregation of three surface-functionalized polystyrene nanoparticles (PSNPs), i.e. negatively charged unfunctionalized nanoparticles (Bare-PS) and carboxylated nanoparticles (COOH-PS), and positively charged amino-functionalized nanoparticles (NH2-PS), with two model natural colloids, positively charged hematite and negatively charged kaolin, respectively. Heteroaggregation was conducted at a constant natural colloid concentration and variable NP/colloid concentration ratios. Electrostatic interaction was the main mechanism driving the formation of heteroaggregates. In binary systems containing hematite and Bare-PS/COOH-PS, a charge neutralization - charge inverse mechanism was observed with the increase of PSNP concentration. At NP/hemetite concentration ratios much smaller or larger than the full charge neutralization point, the primary heteroaggregates were stable, while full charge neutralization induced the formation of large secondary heteroaggregates. Large aggregates were not observed in suspensions containing kaolin and NH2-PS, as highly positively charged NH2-PS reversed surface charges of kaolin at extremely low concentrations. Heteroaggregation between PSNPs and natural colloids with the same charge is unfavorable due to strong electrostatic repulsion. In the presence of electrolytes, homoaggregation and heteroaggregation both occurred, and homoaggregation of hematite played a key role when the concentration of PSNPs was low. The presence of Suwannee River natural organic matter (SRNOM) could modify surface charges of nanoparticles, and thus affect heteroaggregation behaviors of the binary suspension. When SRNOM and electrolytes were both present, whether SRNOM inducing or hindering the stability of the binary system was a combined effect of NP/colloid concentration ratios, SRNOM concentrations, electrolyte types and ionic strength. Mechanisms extensively reported in homoaggregation such as steric hindrance and cation bridging effects between SRNOM and Ca2+ also stand for heteroaggregation. These results highlight the critical role of surface modification on the environmental behaviors of NPs, and will underpin our understanding of the fate and transport of NPs in the aquatic environment.

SELECTION OF CITATIONS
SEARCH DETAIL
...