Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Macromol Rapid Commun ; 44(8): e2200948, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36700486

ABSTRACT

Personal thermal management (PTM) materials have attracted increasing attention owing to their application for personal comfort in an energy-saving mode. However, they normally work in the same media such as in the air, and little is known about what will happen in other media like water. In this study, a system for cross-media thermal management (CMTM): passive cooling in air and thermal insulation underwater is proposed. Hybrid aerogels comprising thermoplastic polyurethane (TPU) matrix and superhydrophobic silica aerogel particle (SSAP) for CMTM are designed and synthesized using a thermally induced phase separation and self-templating strategy. The TPU matrix endows the aerogels with super stretchability (500%), shape memory, and outstanding healing recovery rate (89.9%), which are ideal characteristics for potential wearable usage. Additionally, the TPU and SSAP endow the aerogel with high solar reflectivity and infrared emissivity, thus achieving a sub-ambient cooling of 10.6 °C in air. Moreover, the SSAP endows the aerogels with low thermal conductivity (0.052 W m-1 ·K-1 ) and high hydrophobicity (143°), enabling the aerogels for underwater thermal insulation. The CMTM performance of the aerogels makes them for potential uses in cross-media environments such as reefs and islands where cooling in air and thermal insulation in water are required.


Subject(s)
Cold Temperature , Polyurethanes , Phase Transition , Silicon Dioxide , Water
2.
ACS Appl Mater Interfaces ; 14(41): 46569-46580, 2022 Oct 19.
Article in English | MEDLINE | ID: mdl-36206445

ABSTRACT

Passive thermal regulation has attracted increasing interest owing to its zero-energy consumption capacity, which is expected to alleviate current crises in fossil energy and global warming. In this study, a biomimetic multilayer structure (BMS) comprising a silica aerogel, a photothermal conversion material (PTCM), and a phase change material (PCM) layer is designed inspired by the physiological skin structure of polar bears for passive heating with desirable temperature and endurance. The transparent silica aerogel functions as transparent hairs and allows solar entry and prevents heat dissipation; the PTCM, a glass plate coated with black paint, acts as the black skin to convert the incident sunlight into heat; and the PCM composed of n-octadecane microcapsules stores the heat, regulating temperature and increasing endurance. Impressively, outdoor and simulated experiments indicate efficient passive heating (increment of 60 °C) of the BMS in cold environments, and endurance of 157 and 92 min is achieved compared to a single aerogel and PTCM layer, respectively. The uses of the BMS for passive heating of model houses in winter show an increase of 12.1 °C. COMSOL simulation of the BMSs in high latitudes indicates robust heating and endurance performance in a -20 °C weather. The BMS developed in this study exhibits a smart thermal regulation behavior and paves the way for passive heating in remote areas where electricity and fossil energy are unavailable in cold seasons.

3.
Adv Sci (Weinh) ; 9(20): e2201190, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35474617

ABSTRACT

Passive daytime radiative cooling (PDRC) is an emerging sustainable technology that can spontaneously radiate heat to outer space through an atmospheric transparency window to achieve self-cooling. PDRC has attracted considerable attention and shows great potential for personal thermal management (PTM). However, PDRC polymers are limited to polyethylene, polyvinylidene fluoride, and their derivatives. In this study, a series of polymer films based on thermoplastic polyurethane (TPU) and their composite films with silica aerogels (aerogel-functionalized TPU (AFTPU)) are prepared using a simple and scalable non-solvent-phase-separation strategy. The TPU and AFTPU films are freestanding, mechanically strong, show high solar reflection up to 94%, and emit strongly in the atmospheric transparency window, thereby achieving subambient cooling of 10.0 and 7.7 °C on a hot summer day for the TPU and AFTPU film (10 wt%), respectively. The AFTPU films can be used as waterproof and moisture permeable coatings for traditional textiles, such as cotton, polyester, and nylon, and the highest temperature drop of 17.6 °C is achieved with respect to pristine nylon fabric, in which both the cooling performance and waterproof properties are highly desirable for the PTM applications. This study opens up a promising route for designing common polymers for highly efficient PDRC.

4.
ACS Nano ; 15(12): 19771-19782, 2021 Dec 28.
Article in English | MEDLINE | ID: mdl-34846118

ABSTRACT

Personal thermal management (PTM) materials have recently received considerable attention to improve human body thermal comfort with potentially reduced energy consumption. Strategies include passive radiative cooling and warming. However, challenges remain for passive thermal regulation of one material or structure in both harsh hot and cold environments. In this work, silica aerogels derived from sodium silicate were prepared through a solvent-boiling strategy, where hydrophobization, solvent exchange, sodium purification, and ambient pressure drying (HSSA) proceeded successively and spontaneously in a one-pot process. This strategy leads to the synthesis of superhydrophobic silica aerogels with extremely low energy consumption without out the use of an ion-exchange resin or low surface tension solvents. Silica aerogels possess a high specific surface area (635 m2/g), high contact angle (153°), and low thermal conductivity (0.049 W/m K). A layer-by-layer (LBL) structure including the silica aerogel layer and an extra phase change material layer was designed. The structure demonstrates dual-functional thermal regulation performance in both harsh cold (-30 °C) and hot (70 °C) environments, where the time to reach equilibrium is postponed, and the inner temperature of the LBL structure can be kept above 20 °C in harsh cold environments (-30 °C) and below 31 °C in harsh hot environments (70 °C). A proof-of-concept experimental setup to simulate the illumination of sunlight also proved that the inside temperature of a model car protected by the LBL structure was below 28 °C, while the outside temperature was 70 °C. In addition, these results are well supported by theoretical COMSOL simulation results. The findings of this work not only provide an eco-friendly approach to synthesize silica aerogels but also demonstrate that the LBL structure is a robust dual-functional PTM system for thermal regulation in both harsh hot and cold environments.

SELECTION OF CITATIONS
SEARCH DETAIL
...