Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Food Chem ; 404(Pt B): 134657, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36327512

ABSTRACT

Both cytokinin and NAC transcription factors were reported to involve in leaf senescence. However, the mechanism of NAC transcription factors how to regulate cytokinin-delayed leaf senescence is still unknown. In this study, application of N-(2-chloro-4-pyridyl)-N'-phenylurea (CPPU), a cytokinin analogue, significantly delayed leaf senescence and maintained cytokinin content of Chinese flowering cabbage during storage. Meanwhile, the expression of an NAC transcriptional activator (BrNAC029) was increased but suppressed by CPPU treatment. Furthermore, BrNAC029 activated the expressions of chlorophyll catabolic genes BrPAO and BrSGR2, cytokinin oxidase gene BrCKX1 and senescence maker gene BrSAG113 by binding to their promoters. Additionally, overexpressions of BrNAC029 in tobacco and Arabidopsis accelerated leaf senescence and up-expressed the related genes. Taken together, it was suggested that BrNAC029 may serve as a transcriptional activator to activate the transcriptions of these related genes to eventually accelerate leaf senescence of Chinese flowering cabbage by promoting chlorophyll degradation and reducing endogenous cytokinin level.


Subject(s)
Arabidopsis , Brassica , Transcription Factors/genetics , Transcription Factors/metabolism , Gene Expression Regulation, Plant , Cytokinins , Plant Senescence , Plant Leaves/metabolism , Brassica/genetics , Brassica/metabolism , Chlorophyll/metabolism , Arabidopsis/metabolism , China , Plant Proteins/genetics , Plant Proteins/metabolism
2.
Compr Rev Food Sci Food Saf ; 21(5): 4251-4273, 2022 09.
Article in English | MEDLINE | ID: mdl-35876655

ABSTRACT

Due to the global use of cold chain, the development of postharvest technology to reduce chilling injury (CI) in postharvest fruits and vegetables during storage and transport is needed urgently. Considerable evidence shows that maintaining intracellular adenosine triphosphate (iATP) in harvested fruits and vegetables is beneficial to inhibiting CI occurrence. Extracellular ATP (eATP) is a damage-associated signal molecule and plays an important role in CI of postharvest fruits and vegetables through its receptor and subsequent signal transduction under low-temperature stress. The development of new aptasensors for the simultaneous determination of eATP level allows for better understanding of the roles of eATP in a myriad of responses mediated by low-temperature stress in relation to the chilling tolerance of postharvest fruits and vegetables. The multiple biological functions of eATP and its receptors in postharvest fruits and vegetables were attributed to interactions with reactive oxygen species (ROS) and nitric oxide (NO) in coordination with phytohormones and other signaling molecules via downstream physiological activities. The complicated interconnection among eATP in relation to its receptors, eATP/iATP homeostasis, ROS, NO, and heat shock proteins triggered by eATP recognition has been emphasized. This paper reviews recent advances in the beneficial effects of energy handling, outlines the production and homeostasis of eATP, discusses the possible mechanism of eATP and its receptors in chilling tolerance, and provides future research directions for CI in postharvest fruits and vegetables during low-temperature storage.


Subject(s)
Fruit , Vegetables , Adenosine Triphosphate/metabolism , Adenosine Triphosphate/pharmacology , Fruit/physiology , Heat-Shock Proteins/metabolism , Heat-Shock Proteins/pharmacology , Nitric Oxide/metabolism , Nitric Oxide/pharmacology , Plant Growth Regulators/metabolism , Plant Growth Regulators/pharmacology , Reactive Oxygen Species/metabolism , Reactive Oxygen Species/pharmacology
3.
Food Res Int ; 157: 111275, 2022 07.
Article in English | MEDLINE | ID: mdl-35761587

ABSTRACT

Dietary prenylated stilbenoids present in many food resources, and have good bioactivities. However, their structure-activity relationships are rarely reported. In this work, eighteen C- and O-prenylated stilbenoids were chemically semisynthesized using one-step approach. They all could inhibit sugar digestive enzymes, including α-glucosidase and α-amylase. 4-Geranyl piceatannol from jackfruit showed the strongest activity by suppressing dipeptidyl peptidase-IV (DPP-IV) activity. The enzyme inhibition kinetics were measured and the inhibition mechanism was revealed. Evaluation of antioxidant activity highlighted that the introduction of prenyl with increasing prenyl chain length can significantly increase the antioxidant activity of stilbenoids. Our results suggested that prenylated stilbenoids could be used as functional food additives to decrease postprandial blood sugar levels by inhibiting sugar digestive enzymes and DPP-IV. Prenylated stilbenoids present remarkable DPP-IV inhibitory activity, providing more useful information for the prevention of type 2 diabetes.


Subject(s)
Stilbenes , Antioxidants/pharmacology , Stilbenes/pharmacology , Structure-Activity Relationship , alpha-Glucosidases
4.
Physiol Plant ; 174(2): e13650, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35175634

ABSTRACT

Plant cuticle as hydrophobic barrier covers almost all aerial plant organs. Herein the cuticular chemical components and the transpiration of various organs of Chinese flowering cabbage (CFC) and Chinese kale (CK) were comprehensively characterized. Numerous species- and organ-specific differences in morphological, chemical, and physiological levels were found. The various organs were relatively smooth in surface for CFC but glaucous with hollow tube- and plate-type crystals for CK. The chemical composition of cuticular waxes were very-long chain n-alkanes, ketones, secondary alcohols with a prominent carbon chain of C29 in CK, primary alcohols dominated by C26 , and aldehydes prominently C30 in CFC. Cutin monomers accumulated with similar levels as waxes and were dominated by α,ω-dicarboxylic acids and fatty acids without added groups. The minimum water conductance differed considerably among species and various organs ranging between 8.9 × 10-5 (CK leaf) and 3.7 × 10-4  m s-1 (CFC leaf petiole). These differences in transpiration properties were proposed to be largely related to the cuticular chemicals in various organs and species. The presented results provide further insights to link the transpiration barrier functions with surface characteristics and cuticular chemicals.


Subject(s)
Brassica , Plant Epidermis , Alcohols/analysis , China , Plant Epidermis/chemistry , Waxes/chemistry
5.
Plant Physiol Biochem ; 155: 589-595, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32846394

ABSTRACT

The cuticular membrane covering almost all aerial plant organs has a primary function in limiting uncontrolled water loss. The guava fruits were collected and this work was done to study the potential contribution of cuticular chemical composition to fruit transpiration after harvest. The detailed cuticular chemical composition, based on gas chromatography together with mass spectrometry, and the transpiration rate determined gravimetrically in guava fruit were characterized in the present study. The predominant wax mixtures were fatty acids and primary alcohols with homologous series of C16-C33, as well as various pentacyclic triterpenoids with abundant amounts of ursolic acid, maslinic acid and uvaol. The most prominent cutin compounds were C16 and C18‒type monomers dominated by 9(10),16-diOH-hexadecanoic acid and 9,10-epoxy-ω-OH-octadecanoic acid, respectively. Relatively high water permeability with a value of 5.1 × 10-4 m s-1 was detected for guava fruit. The lower efficiency of the cuticle as barrier to transpiration in guava fruit, as compared to that of other reported fruits, leaves, and petals, was seemingly related to the relatively short average chain-length of acyclic compounds in wax mixtures. These findings provide useful insights linking the chemical composition of the cuticular membrane that covers plant organs to putative physiological roles.


Subject(s)
Fruit/chemistry , Plant Transpiration , Psidium/chemistry , Waxes/chemistry , Membranes , Plant Leaves
6.
J Sci Food Agric ; 100(6): 2664-2674, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31997352

ABSTRACT

BACKGROUND: Newhall navel orange (Citrus sinensis Osbeck cv. Newhall) is the major navel orange cultivar planted in China. Almost all Newhall navel orange peels produced in that country are currently discarded, which is not only harmful to the environment but also a waste of resources. It is therefore necessary to carry out research to explore the utilization potential of this resource. RESULTS: A 95% ethanol extract (EE) of Newhall orange peel was prepared and fractionated into three subextracts: petroleum ether extract (PEE), ethyl acetate extract (EtOAcE), and water extract (WE) by simple liquid / liquid extractions. These four extracts were then subjected to antioxidant, antibacterial, and tyrosinase inhibition assays. Interestingly, EtOAcE was significantly superior to all other three extracts, exhibiting the best biological effects. The total polyphenol content (TPC), total flavonoid content (TFC), and primary individual flavonoids of these four extracts were analyzed and compared. This was followed by principal component analysis (PCA) and the Pearson's correlation test. The result indicates that the primary bioactive compounds responsible for the biological effects of the EtOAcE are sinensetin, 4',5,6,7-tetramethoxyflavone, nobiletin, 3,3',4',5,6,7-hexamethoxyflavone, and narirutin. In view of its easy preparation and potent biological effects, EtOAcE might demonstrate excellent application potential in various industrial areas. CONCLUSIONS: This study successfully identified EtOAcE as a potent naturally occurring antioxidant, antibacterial, and tyrosinase inhibitory agent, which might add value to the utilization of Newhall navel orange peel in the food, cosmetic, and pharmaceutical industries. © 2020 Society of Chemical Industry.


Subject(s)
Citrus sinensis/chemistry , Fruit/chemistry , Plant Extracts/chemistry , Anti-Bacterial Agents/pharmacology , Antioxidants/analysis , Bacteria/drug effects , Monophenol Monooxygenase/antagonists & inhibitors , Waste Products/analysis
7.
Ecol Evol ; 9(9): 5372-5379, 2019 May.
Article in English | MEDLINE | ID: mdl-31110686

ABSTRACT

To elucidate potential ecological and evolutionary processes associated with the assembly of plant communities, there is now widespread use of estimates of phylogenetic diversity that are based on a variety of DNA barcode regions and phylogenetic construction methods. However, relatively few studies consider how estimates of phylogenetic diversity may be influenced by single DNA barcodes incorporated into a sequence matrix (conservative regions vs. hypervariable regions) and the use of a backbone family-level phylogeny. Here, we use general linear mixed-effects models to examine the influence of different combinations of core DNA barcodes (rbcL, matK, ITS, and ITS2) and phylogeny construction methods on a series of estimates of community phylogenetic diversity for two subtropical forest plots in Guangdong, southern China. We ask: (a) What are the relative influences of single DNA barcodes on estimates phylogenetic diversity metrics? and (b) What is the effect of using a backbone family-level phylogeny to estimate topology-based phylogenetic diversity metrics? The combination of more than one barcode (i.e., rbcL + matK + ITS) and the use of a backbone family-level phylogeny provided the most parsimonious explanation of variation in estimates of phylogenetic diversity. The use of a backbone family-level phylogeny showed a stronger effect on phylogenetic diversity metrics that are based on tree topology compared to those that are based on branch lengths. In addition, the variation in the estimates of phylogenetic diversity that was explained by the top-rank models ranged from 0.1% to 31% and was dependent on the type of phylogenetic community structure metric. Our study underscores the importance of incorporating a multilocus DNA barcode and the use of a backbone family-level phylogeny to infer phylogenetic diversity, where the type of DNA barcode employed and the phylogenetic construction method used can serve as a significant source of variation in estimates of phylogenetic community structure.

8.
Biomolecules ; 9(4)2019 04 24.
Article in English | MEDLINE | ID: mdl-31022937

ABSTRACT

Modification of cell wall polysaccharide in the plant plays an important role in response to fungi infection. However, the mechanism of fungi infection on cell wall modification need further clarification. In this study, the effects of Penicillium italicum inoculation on 'shatangju' mandarin disease development and the potential mechanism of cell wall polysaccharides modification caused by P. italicum were investigated. Compared to the control fruit, P. italicum infection modified the cell wall polysaccharides, indicated by water-soluble pectin (WSP), acid-soluble pectin (ASP), hemicellulose and lignin contents change. P. italicum infection enhanced the activities of polygalacturonase (PG), pectin methylesterase (PME), and the expression levels of xyloglucanendotransglucosylase/hydrolase (XTH) and expansin, which might contribute to cell wall disassembly and cellular integrity damage. Additionally, higher accumulation of reactive oxygen species (ROS) via decreasing antioxidant metabolites and the activities of antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) also contributed to the cell wall polysaccharides modification. Meanwhile, the gene expression levels of hydroxyproline-rich glycoprotein (HRGP) and germin-like protein (GLP) were inhibited by pathogen infection. Altogether, these findings suggested that cell wall degradation/modification caused by non-enzymatic and enzymatic factors was an important strategy for P. italicum to infect 'shatangju' mandarin.


Subject(s)
Cell Wall/metabolism , Citrus/metabolism , Lignin/metabolism , Pectins/metabolism , Penicillium/pathogenicity , Polysaccharides/metabolism , Cell Wall/microbiology , Citrus/microbiology , Glycosyltransferases/genetics , Glycosyltransferases/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Polygalacturonase/genetics , Polygalacturonase/metabolism , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...