Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.058
Filter
1.
Allergy Asthma Clin Immunol ; 20(1): 38, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38951930

ABSTRACT

OBJECTIVE: The aim of this study was to investigate the role and mechanisms of miR-155 in chronic spontaneous urticaria (CSU). METHODS: The expression level of miR-155 in the skin tissues of patients with CSU and experimental rats were detected by RT-qPCR, followed by the measurement of the histamine release rate in the serum through the histamine release test. Besides, hematoxylin & eosin staining was used to observe the pathological changes of the skin tissues; Corresponding detection kits and flow cytometry to measure the changes of immunoglobulins, inflammatory cytokines and T cell subsets in the serum of rats in each group; and western blot to check the expression level of proteins related to JAK/STAT signaling pathway in the skin tissues. RESULTS: Knockdown of miR-155 reduced the number and duration of pruritus, alleviated the skin damage, and decreased the number of eosinophils in CSU rats. Moreover, knockdown of miR-155 elevated the serum levels of IgG and IgM, decreased the levels of IgA and inflammatory cytokines, and reduced the proportion of CD4 + and CD4 + CD25 + T cells, as well as the CD4+/CD8 + ratio in CSU rats. However, Tyr705 intervention could reverse the effects of knockdown of miR-155 on CSU model rats. Furthermore, we found that knockdown of miR-155 significantly reduced the protein expression of IRF-9, as well as the P-JAK2/JAK2 and P-STAT3/STAT3 ratios in the skin tissues of CSU rats. CONCLUSION: Knockdown of miR-155 can alleviate skin damage and inflammatory responses and relieve autoimmunity in CSU rats by inhibiting the JAK/STAT3 signaling pathway.

2.
Adv Sci (Weinh) ; : e2400196, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38978353

ABSTRACT

Osteoarthritis is a highly prevalent progressive joint disease that still requires an optimal therapeutic approach. Intermittent fasting is an attractive dieting strategy for improving health. Here this study shows that intermittent fasting potently relieves medial meniscus (DMM)- or natural aging-induced osteoarthritic phenotypes. Osteocytes, the most abundant bone cells, secrete excess neuropeptide Y (NPY) during osteoarthritis, and this alteration can be altered by intermittent fasting. Both NPY and the NPY-abundant culture medium of osteocytes (OCY-CM) from osteoarthritic mice possess pro-inflammatory, pro-osteoclastic, and pro-neurite outgrowth effects, while OCY-CM from the intermittent fasting-treated osteoarthritic mice fails to induce significant stimulatory effects on inflammation, osteoclast formation, and neurite outgrowth. Depletion of osteocyte NPY significantly attenuates DMM-induced osteoarthritis and abolishes the benefits of intermittent fasting on osteoarthritis. This study suggests that osteocyte NPY is a key contributing factor in the pathogenesis of osteoarthritis and intermittent fasting represents a promising nonpharmacological antiosteoarthritis method by targeting osteocyte NPY.

3.
World J Gastroenterol ; 30(24): 3086-3105, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38983958

ABSTRACT

BACKGROUND: Helicobacter pylori (HP), the most common pathogenic microorganism in the stomach, can induce inflammatory reactions in the gastric mucosa, causing chronic gastritis and even gastric cancer. HP infection affects over 4.4 billion people globally, with a worldwide infection rate of up to 50%. The multidrug resistance of HP poses a serious challenge to eradication. It has been de-monstrated that compared to bismuth quadruple therapy, Qingre Huashi decoction (QHD) combined with triple therapy exhibits comparable eradication rates but with a lower incidence of adverse reactions; in addition, QHD can directly inhibit and kill HP in vitro. AIM: To explore the effect and mechanism of QHD on clinically multidrug-resistant and strong biofilm-forming HP. METHODS: In this study, 12 HP strains were isolated in vitro after biopsy during gastroscopy of HP-infected patients. In vitro, the minimum inhibitory concentration (MIC) values for clinical HP strains and biofilm quantification were determined through the E-test method and crystal violet staining, respectively. The most robust biofilm-forming strain of HP was selected, and QHD was evaluated for its inhibitory and bactericidal effects on the strain with strong biofilm formation. This assessment was performed using agar dilution, E-test, killing dynamics, and transmission electron microscopy (TEM). The study also explored the impact of QHD on antibiotic resistance in these HP strains with strong biofilm formation. Crystalline violet method, scanning electron microscopy, laser confocal scanning microscopy, and (p)ppGpp chromatographic identification were employed to evaluate the effect of QHD on biofilm in strong biofilm-forming HP strains. The effect of QHD on biofilm and efflux pump-related gene expression was evaluated by quantitative polymerase chain reaction. Non-targeted metabolomics with UHPLC-MS/MS was used to identify potential metabolic pathways and biomarkers which were different between the NC and QHD groups. RESULTS: HP could form biofilms of different degrees in vitro, and the intensity of formation was associated with the drug resistance of the strain. QHD had strong bacteriostatic and bactericidal effects on HP, with MICs of 32-64 mg/mL. QHD could inhibit the biofilm formation of the strong biofilm-forming HP strains, disrupt the biofilm structure, lower the accumulation of (p)ppGpp, decrease the expression of biofilm-related genes including LuxS, Spot, glup (HP1174), NapA, and CagE, and reduce the expression of efflux pump-related genes such as HP0605, HP0971, HP1327, and HP1489. Based on metabolomic analysis, QHD induced oxidative stress in HP, enhanced metabolism, and potentially inhibited relevant signaling pathways by upregulating adenosine monophosphate (AMP), thereby affecting HP growth, metabolism, and protein synthesis. CONCLUSION: QHD exerts bacteriostatic and bactericidal effects on HP, and reduces HP drug resistance by inhibiting HP biofilm formation, destroying its biofilm structure, inhibiting the expression of biofilm-related genes and efflux pump-related genes, enhancing HP metabolism, and activating AMP in HP.


Subject(s)
Anti-Bacterial Agents , Biofilms , Drugs, Chinese Herbal , Helicobacter Infections , Helicobacter pylori , Microbial Sensitivity Tests , Helicobacter pylori/drug effects , Helicobacter pylori/isolation & purification , Biofilms/drug effects , Humans , Drugs, Chinese Herbal/pharmacology , Helicobacter Infections/drug therapy , Helicobacter Infections/microbiology , Anti-Bacterial Agents/pharmacology , Drug Resistance, Multiple, Bacterial/drug effects , Gastroscopy
4.
Huan Jing Ke Xue ; 45(7): 3995-4005, 2024 Jul 08.
Article in Chinese | MEDLINE | ID: mdl-39022947

ABSTRACT

Danjiangkou Reservoir is a critical water source for the South-to-North Water Diversion Project, which harbors a diverse bacterioplankton community with varying depths, and the understanding of its nitrogen and phosphorus cycle and associated driving factors remains limited. In this study, we selected five ecological sites within Danjiangkou Reservoir and conducted metagenomics analysis to investigate the vertical distribution of bacterioplankton communities in the surface, middle, and bottom layers. Furthermore, we analyzed and predicted the function of nitrogen and phosphorus cycles, along with their driving factors. Our findings revealed the dominance of Proteobacteria, Actinobacteria, and Planctomycetes in the Danjiangkou Reservoir. Significant differences were observed in the structure of bacterioplankton communities across different depths, with temperature (T), oxidation-reduction potential (ORP), dissolved oxygen (DO), and Chla identified as primary factors influencing the bacterioplankton composition. Analysis of nitrogen cycle functional genes identified 39 genes, including gltB, glnA, gltD, gdhA, NRT, etc., which were involved in seven main pathways, encompassing nitrogen fixation, nitrification, denitrification, and dissimilatory nitrate reduction. Phosphorus cycle function gene analysis identified 54 genes, including pstS, ppx-gppA, glpQ, ppk1, etc., primarily participating in six main pathways, including organic P mineralization, inorganic P solubilization, and regulatory. Cluster analysis indicated that different depths were significant factors influencing the composition and abundance of nitrogen and phosphorus cycle functional genes. The composition and abundance of nitrogen and phosphorus cycle functional genes in the surface and bottom layers differed and were generally higher than those in the middle layer. Deinococcus, Hydrogenophaga, Limnohabitans, Clavibacter, and others were identified as key species involved in the nitrogen and phosphorus cycle. Additionally, we found significant correlations between nitrogen and phosphorus cycle functional genes and environmental factors such as DO, pH, T, total dissolved solids (TDS), electrical conductivity (EC), and Chla. Furthermore, the content of these environmental factors exhibited depth-related changes in the Danjiangkou Reservoir, resulting in a distinct vertical distribution pattern of bacterioplankton nitrogen and phosphorus cycle functional genes. Overall, this study sheds light on the composition, function, and influencing factors of bacterioplankton communities across different layers of Danjiangkou Reservoir, offering valuable insights for the ecological function and diversity protection of bacterioplankton in this crucial reservoir ecosystem.


Subject(s)
Nitrogen , Phosphorus , Plankton , Phosphorus/metabolism , China , Nitrogen/metabolism , Plankton/genetics , Plankton/metabolism , Bacteria/genetics , Bacteria/metabolism , Bacteria/classification , Proteobacteria/genetics , Nitrogen Cycle , Actinobacteria/genetics , Actinobacteria/metabolism , Genes, Bacterial
5.
Hepatol Commun ; 8(8)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39023343

ABSTRACT

BACKGROUND: When massive necrosis occurs in acute liver failure (ALF), rapid expansion of HSCs called liver progenitor cells (LPCs) in a process called ductular reaction is required for survival. The underlying mechanisms governing this process are not entirely known to date. In ALF, high levels of retinoic acid (RA), a molecule known for its pleiotropic roles in embryonic development, are secreted by activated HSCs. We hypothesized that RA plays a key role in ductular reaction during ALF. METHODS: RNAseq was performed to identify molecular signaling pathways affected by all-trans retinoid acid (atRA) treatment in HepaRG LPCs. Functional assays were performed in HepaRG cells treated with atRA or cocultured with LX-2 cells and in the liver tissue of patients suffering from ALF. RESULTS: Under ALF conditions, activated HSCs secreted RA, inducing RARα nuclear translocation in LPCs. RNAseq data and investigations in HepaRG cells revealed that atRA treatment activated the WNT-ß-Catenin pathway, enhanced stemness genes (SOX9, AFP, and others), increased energy storage, and elevated the expression of ATP-binding cassette transporters in a RARα nuclear translocation-dependent manner. Further, atRA treatment-induced pathways were confirmed in a coculture system of HepaRG with LX-2 cells. Patients suffering from ALF who displayed RARα nuclear translocation in the LPCs had significantly better MELD scores than those without. CONCLUSIONS: During ALF, RA secreted by activated HSCs promotes LPC activation, a prerequisite for subsequent LPC-mediated liver regeneration.


Subject(s)
Liver Failure, Acute , Stem Cells , Tretinoin , Humans , Tretinoin/pharmacology , Stem Cells/drug effects , Wnt Signaling Pathway/drug effects , Liver/drug effects , Retinoic Acid Receptor alpha/genetics , Retinoic Acid Receptor alpha/metabolism , Coculture Techniques , Hepatic Stellate Cells/drug effects , Hepatic Stellate Cells/metabolism
6.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(7): 835-839, 2024 Jul 10.
Article in Chinese | MEDLINE | ID: mdl-38946368

ABSTRACT

OBJECTIVE: To explore the genetic basis for a fetus with nuchal cystic hygroma identified in the first trimester and cholecystomegaly identified in the middle trimester of pregnancy. METHODS: A 27-year-old pregnant woman who had presented at the Antenatal Diagnostic Center of Jinan Maternal and Child Health Care Hospital on October 25, 2018 was selected as the study subject. Chorionic villus sampling was carried out in the first trimester for chromosomal karyotyping and SNP-Array analysis. Amniocentesis was carried out in the second trimester, and peripheral blood of the couple was collected at the same time. Trio whole exome sequencing (WES) was carried out, and candidate variant was verified by Sanger sequencing and bioinformatic analysis. RESULTS: No abnormality was found by chromosomal karyotyping and SNP-Array, whilst high-throughput sequencing revealed that the fetus had harbored a heterozygous c.7732A>T (p.K2578X) nonsense variant of the NIPBL gene. Following elected abortion, the autopsy results were consistent with features of Cornelia de Lange syndrome (CdLS). The same variant was detected in neither parents and was unreported in the literature. Based on the guidelines from the American College of Medical Genetics and Genomics (ACMG), it was classified as pathogenic (PVS1+PS2+PM2_Supporting+PP3). CONCLUSION: The novel nonsense variant of the NIPBL gene probably underlay the genetic etiology of CdLS in this fetus. Above finding has also enriched the mutational spectrum of the NIPBL gene.


Subject(s)
Cell Cycle Proteins , De Lange Syndrome , Prenatal Diagnosis , Humans , Female , Pregnancy , De Lange Syndrome/genetics , Adult , Prenatal Diagnosis/methods , Cell Cycle Proteins/genetics , Fetus/abnormalities , Exome Sequencing
7.
Mol Neurobiol ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38965172

ABSTRACT

A pathological hallmark of Alzheimer's disease (AD) is the region-specific accumulation of the amyloid-beta protein (Aß), which triggers aberrant neuronal excitability, synaptic impairment, and progressive cognitive decline. Previous works have demonstrated that Aß pathology induced aberrant elevation in the levels and excessive enzymatic hydrolysis of voltage-gated sodium channel type 2 beta subunit (Navß2) in the brain of AD models, accompanied by alteration in excitability of hippocampal neurons, synaptic deficits, and subsequently, cognitive dysfunction. However, the mechanism is unclear. In this research, by employing cell models treated with toxic Aß1-42 and AD mice, the possible effects and potential mechanisms induced by Navß2. The results reveal that Aß1-42 induces remarkable increases in Navß2 intracellular domain (Navß2-ICD) and decreases in both BDNF exons and protein levels, as well as phosphorylated tropomyosin-related kinase B (pTrkB) expression in cells and mice, coupled with cognitive impairments, synaptic deficits, and aberrant neuronal excitability. Administration with exogenous Navß2-ICD further enhances these effects induced by Aß1-42, while interfering the generation of Navß2-ICD and/or complementing BDNF neutralize the Navß2-ICD-conducted effects. Luciferase reporter assay verifies that Navß2-ICD regulates BDNF transcription and expression by targeting its promoter. Collectively, our findings partially elucidate that abnormal enzymatic hydrolysis of Navß2 induced by Aß1-42-associated AD pathology leads to intracellular Navß2-ICD overload, which may responsible to abnormal neuronal excitability, synaptic deficit, and cognition dysfunction, through its transcriptional suppression on BDNF. Therefore, this work supplies novel evidences that Navß2 plays crucial roles in the occurrence and progression of cognitive impairment of AD by transcriptional regulatory activity of its cleaved ICD.

8.
Mar Pollut Bull ; 206: 116685, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39002220

ABSTRACT

Human activities emitting carbon dioxide (CO2) have caused severe greenhouse effects and accelerated climate change, making carbon neutrality urgent. Seawater mineral carbonation technology offers a promising negative emission strategy. This work investigates current advancements in proposed seawater mineral carbonation technologies, including CO2 storage and ocean chemical carbon sequestration. CO2 storage technology relies on indirect mineral carbonation to fix CO2, involving CO2 dissolution, Ca/Mg extraction, and carbonate precipitation, optimized by adding alkaline substances or using electrochemical methods. Ocean chemical carbon sequestration uses natural seawater for direct mineral carbonation, enhanced by adding specific materials to promote carbonate precipitation and increase CO2 absorption, thus enhancing marine carbon sinks. This study evaluates these technologies' advantages and challenges, including reaction rates, costs, and ecological impacts, and analyzes representative materials' carbon fixation potential. Literature indicates that seawater mineral carbonation can play a significant role in CO2 storage and enhancing marine carbon sinks in the coming decades.

9.
Schizophr Bull ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38988003

ABSTRACT

BACKGROUND AND HYPOTHESIS: Zinc finger protein 804A (ZNF804A) was the first genome-wide associated susceptibility gene for schizophrenia (SCZ) and played an essential role in the pathophysiology of SCZ by influencing neurodevelopment regulation, neurite outgrowth, synaptic plasticity, and RNA translational control; however, the exact molecular mechanism remains unclear. STUDY DESIGN: A nervous-system-specific Zfp804a (ZNF804A murine gene) conditional knockout (cKO) mouse model was generated using clustered regularly interspaced short palindromic repeat/Cas9 technology and the Cre/loxP method. RESULTS: Multiple and complex SCZ-like behaviors, such as anxiety, depression, and impaired cognition, were observed in Zfp804a cKO mice. Molecular biological methods and targeted metabolomics assay validated that Zfp804a cKO mice displayed altered SATB2 (a cortical superficial neuron marker) expression in the cortex; aberrant NeuN, cleaved caspase 3, and DLG4 (markers of mature neurons, apoptosis, and postsynapse, respectively) expressions in the hippocampus and a loss of glutamate (Glu)/γ-aminobutyric acid (GABA) homeostasis with abnormal GAD67 (Gad1) expression in the hippocampus. Clozapine partly ameliorated some SCZ-like behaviors, reversed the disequilibrium of the Glu/GABA ratio, and recovered the expression of GAD67 in cKO mice. CONCLUSIONS: Zfp804a cKO mice reproducing SCZ-like pathological and behavioral phenotypes were successfully developed. A novel mechanism was determined in which Zfp804a caused Glu/GABA imbalance and reduced GAD67 expression, which was partly recovered by clozapine treatment. These findings underscore the role of altered gene expression in understanding the pathogenesis of SCZ and provide a reliable SCZ model for future therapeutic interventions and biomarker discovery.

10.
Clin Exp Med ; 24(1): 153, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38972923

ABSTRACT

Rheumatoid arthritis (RA) is a common autoimmune rheumatic disease that causes chronic synovitis, bone erosion, and joint destruction. The autoantigens in RA include a wide array of posttranslational modified proteins, such as citrullinated proteins catalyzed by peptidyl arginine deiminase4a. Pathogenic anti-citrullinated protein antibodies (ACPAs) directed against a variety of citrullinated epitopes are abundant both in plasma and synovial fluid of RA patients. ACPAs play an important role in the onset and progression of RA. Intensive and extensive studies are being conducted to unveil the mechanisms of RA pathogenesis and evaluate the efficacy of some investigative drugs. In this review, we focus on the formation and pathogenic function of ACPAs.


Subject(s)
Anti-Citrullinated Protein Antibodies , Arthritis, Rheumatoid , Humans , Arthritis, Rheumatoid/immunology , Anti-Citrullinated Protein Antibodies/immunology , Autoantigens/immunology , Synovial Fluid/immunology , Synovial Fluid/metabolism
11.
Eur J Med Res ; 29(1): 362, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38997774

ABSTRACT

BACKGROUND: Bilirubin is known for its multifaceted attributes, including antioxidant, anti-inflammatory, immunomodulatory, and antiapoptotic properties. The systemic immune-inflammation index (SII) is a recent marker that reflects the balance between inflammation and immune response. Despite the wealth of information available on bilirubin's diverse functionalities, the potential correlation between the total bilirubin (TB) levels and SII has not been investigated so far. METHODS: Leveraging data from the National Health and Nutrition Examination Survey spanning 2009-2018, the TB levels were categorized using tertiles. Employing the chi-squared test with Rao and Scott's second-order correction and Spearman's rank correlation analysis, the association between TB and SII was examined. The potential nonlinearities between TB and SII were evaluated using restricted cubic spline (RCS) analysis. Weighted linear regression, adjusted for covariates, was used to explore the correlation between TB and SII, with further subgroup analyses. RESULTS: A total of 16,858 participants were included, and the findings revealed significant SII variations across TB tertiles (p < 0.001). The third tertile (Q3) exhibited the lowest SII level at 495.73 (295.00) 1000 cells/µL. Spearman rank correlation disclosed the negative association between TB and SII. RCS analysis exposed the lack of statistically significant variations in the nonlinear relationship (p > 0.05), thereby providing support for a linear relationship. Weighted linear regression analysis underscored the negative correlation between TB and SII (ß 95% CI - 3.9 [- 5.0 to - 2.9], p < 0.001). The increase in the TB levels is associated with a significant linear trend toward decreasing SII. After controlling for relative covariates, this negative correlation increased (p < 0.001). Subgroup analysis confirmed the significant negative TB-SII association. CONCLUSION: A notable negative correlation between TB and SII implies the potential protective effects of bilirubin in inflammation-related diseases.


Subject(s)
Bilirubin , Inflammation , Nutrition Surveys , Bilirubin/blood , Humans , Male , Female , Inflammation/blood , Inflammation/immunology , Middle Aged , Adult , Biomarkers/blood , Aged , Cross-Sectional Studies
12.
World J Clin Cases ; 12(20): 4048-4056, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39015898

ABSTRACT

BACKGROUND: Post-stroke infection is the most common complication of stroke and poses a huge threat to patients. In addition to prolonging the hospitalization time and increasing the medical burden, post-stroke infection also significantly increases the risk of disease and death. Clarifying the risk factors for post-stroke infection in patients with acute ischemic stroke (AIS) is of great significance. It can guide clinical practice to perform corresponding prevention and control work early, minimizing the risk of stroke-related infections and ensuring favorable disease outcomes. AIM: To explore the risk factors for post-stroke infection in patients with AIS and to construct a nomogram predictive model. METHODS: The clinical data of 206 patients with AIS admitted to our hospital between April 2020 and April 2023 were retrospectively collected. Baseline data and post-stroke infection status of all study subjects were assessed, and the risk factors for post-stroke infection in patients with AIS were analyzed. RESULTS: Totally, 48 patients with AIS developed stroke, with an infection rate of 23.3%. Age, diabetes, disturbance of consciousness, high National Institutes of Health Stroke Scale (NIHSS) score at admission, invasive operation, and chronic obstructive pulmonary disease (COPD) were risk factors for post-stroke infection in patients with AIS (P < 0.05). A nomogram prediction model was constructed with a C-index of 0.891, reflecting the good potential clinical efficacy of the nomogram prediction model. The calibration curve also showed good consistency between the actual observations and nomogram predictions. The area under the receiver operating characteristic curve was 0.891 (95% confidence interval: 0.839-0.942), showing predictive value for post-stroke infection. When the optimal cutoff value was selected, the sensitivity and specificity were 87.5% and 79.7%, respectively. CONCLUSION: Age, diabetes, disturbance of consciousness, NIHSS score at admission, invasive surgery, and COPD are risk factors for post-stroke infection following AIS. The nomogram prediction model established based on these factors exhibits high discrimination and accuracy.

13.
Int J Pharm ; 661: 124457, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38992736

ABSTRACT

Osteoporosis, a prevalent systemic bone metabolic disorder, primarily affects postmenopausal women and is characterized by increased bone fragility and a heightened risk of fractures. The efficacy of current osteoporosis treatments is often limited by non-specific drug targeting and undesirable off-target skeletal side effects. To address this challenge, we have developed a novel hydroxyapatite-responsive drug delivery system. This system utilizes a self-assembled p-phosphonatocalix[4]arene tetradodecyl ether (PC4A12C), engineered to specifically target and sustain the release of osteoporosis medication at sites of bone remodeling. Our focus centers on icariin (ICA), a drug known for its potent osteogenic properties and minimal adverse effects. In vitro, ICA-loaded PC4A12C (ICA@PC4A12C) demonstrated enhanced proliferation, differentiation, and mineralization in bone marrow mesenchymal stem cells (BMSCs). In vivo, ICA@PC4A12C exhibited superior efficacy in specifically targeting bone tissue, ensuring a controlled and slow release of icariin directly within the bone environment. In an osteoporosis mouse model, treatment with ICA@PC4A12C showed notable enhancement in osteogenic activity and a significant increase in bone density compared to ICA alone. These results demonstrate the potential of PC4A12C as an effective drug carrier in the development of advanced antiosteoporotic drug delivery systems.

14.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(7): 757-764, 2024 Jul 15.
Article in Chinese | MEDLINE | ID: mdl-39014954

ABSTRACT

OBJECTIVES: To investigate the protective effects of 2-methoxyestradiol (2ME) against hypoxic pulmonary hypertension (HPH) in neonatal rats. METHODS: Ninety-six Wistar neonatal rats were randomly divided into a normoxia group, a hypoxia group, and a hypoxia + 2ME group, with each group further subdivided into 3-day, 7-day, 14-day, and 21-day subgroups, containing eight rats each. The hypoxia and hypoxia + 2ME groups received daily subcutaneous injections of saline and 2ME (240 µg/kg), respectively, while the normoxia group was raised in a normoxic environment with daily saline injections. Right ventricular systolic pressure (RVSP) was measured using the direct pressure method. Pulmonary vascular morphology was assessed using hematoxylin and eosin staining, with metrics including the percentage of medial thickness of small pulmonary arteries relative to the external diameter (MT%) and the cross-sectional area of the media of small pulmonary arteries relative to the total cross-sectional area (MA%). Immunohistochemistry was used to detect the expression levels of hypoxia-inducible factor-1α (HIF-1α) and proliferating cell nuclear antigen (PCNA) proteins, while real-time quantitative PCR was used to to assess HIF-1α and PCNA mRNA levels. RESULTS: Compared to the normoxia group, the hypoxia and hypoxia + 2ME groups showed increased RVSP and upregulated HIF-1α and PCNA protein and mRNA expression levels at 3, 7, 14, and 21 days after hypoxia (P<0.05). Furthermore, at 7, 14, and 21 days after hypoxia, the hypoxia group showed increased MT% and MA% (P<0.05). In comparison to the hypoxia group, the hypoxia + 2ME group exhibited reduced RVSP and downregulated HIF-1α and PCNA protein and mRNA expression levels, along with decreased MT% and MA% at 7, 14, and 21 days after hypoxia (P<0.05). CONCLUSIONS: 2ME may protect against HPH in neonatal rats by inhibiting the expression of HIF-1α and PCNA and reducing pulmonary vascular remodeling. Citation:Chinese Journal of Contemporary Pediatrics, 2024, 26(7): 757-764.


Subject(s)
2-Methoxyestradiol , Animals, Newborn , Hypertension, Pulmonary , Hypoxia-Inducible Factor 1, alpha Subunit , Hypoxia , Proliferating Cell Nuclear Antigen , Pulmonary Artery , Rats, Wistar , Animals , 2-Methoxyestradiol/pharmacology , Rats , Hypertension, Pulmonary/prevention & control , Hypertension, Pulmonary/drug therapy , Proliferating Cell Nuclear Antigen/analysis , Proliferating Cell Nuclear Antigen/genetics , Hypoxia/complications , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Pulmonary Artery/drug effects , Male , Female , Estradiol/pharmacology , Estradiol/analogs & derivatives , RNA, Messenger/analysis
15.
Shanghai Kou Qiang Yi Xue ; 33(2): 195-199, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-39005099

ABSTRACT

PURPOSE: To investigate the clinical features of children who received treatment under dental general anesthesia (DGA). METHODS: The clinical records of dental patients below 18 years old who were treated under DGA at the Department of Pediatric Dentistry, Affiliated Dental Hospital of Kunming Medical University during June 2017 to November 2019 were obtained, including the baseline information, causes for DGA, anesthesia methods, intubation methods, treatment items, treatment time and follow-up visits. SPSS 26.0 software package was used to analyze the data. RESULTS: A total of 120 patients were included, 58.3% were males, and children aged 3 to 6 years showed the highest demand for DGA (85.0%). Fear of dental treatment, ineffective non-drug behavior management was the main causes for DGA in young children, while the most common causes for children over 6 years old to choose DGA were mental retardation (38.9%) and patients' needs(38.9%). The average number of teeth treated was (15.16±3.42) for each child, and the average time for treating one tooth was 12.26 min. Restoration, root canal treatment and primary teeth pre-forming crown(including anterior preformed resin transparent crown and posterior preformed metal crown) were the main treatment items. At 1-week follow-up visits, 98.3% of children had no discomfort. During 2017 to 2019, there was an increasing tendency in the number of patients who chose DGA in the authors' institute. CONCLUSIONS: The dental issues of children with fear of dental treatment, ineffectiveor non-drug behavior management or mental retardation can be treated under DGA conveniently, safely and efficiently. The acceptance rate of DGA among pediatric patients is on the rise. DGA training programs and related support projects are needed to meet the treatment demands among patients in less developed areas.


Subject(s)
Anesthesia, Dental , Anesthesia, General , Humans , Child , Child, Preschool , Retrospective Studies , Anesthesia, Dental/methods , Male , Dental Care for Children/methods , Female , Root Canal Therapy/methods , Root Canal Therapy/psychology , Adolescent , Dental Anxiety , Dental Restoration, Permanent/methods , Tooth, Deciduous , Crowns
16.
Am J Cardiol ; 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39009056

ABSTRACT

Coronavirus disease 2019 (COVID-19) may predispose patients to cardiac injuries but whether COVID-19 infection affects the morphological features of coronary plaques to potentially influence the outcome of patients with coronary artery disease (CAD) remains unknown. By using optical coherence tomography (OCT), this study compared the characteristics of coronary plaque in CAD patients with/without COVID-19 infection. The 206 patients were divided into two groups. The COVID-19 group had 113 patients between December 7, 2022 and March 31, 2023 who received optical coherence tomography (OCT) assessment after China decided to lift the restrict on COVID-19 and had a history of COVID-19 infection. The non-COVID-19 group had 93 patients without COVID-19 infection who underwent OCT before December 7, 2022. The COVID-19 group demonstrated a higher incidence of plaque ruptures (53.1% vs. 38.7%, p=0.039), erosions (28.3% vs. 11.8%, p=0.004), fibrous (96.5% vs. 89.2%, p=0.041) and diffuse lesions (73.5% vs. 50.5%, p<0.001) compared to the non-COVID-19 group, whereas non-COVID-19 group exhibited a higher frequency of cholesterol crystals (83.9% vs. 70.8%, p=0.027), deep calcifications (65.6% vs. 51.3%, p=0.039) and solitary lesions (57.0% vs. 34.5%, p=0.001). Kaplan-Meier survival analysis revealed a significantly lower major adverse cardiac events (MACE)-free probability in COVID-19 group (91.6% vs. 95.5%, P=0.006) than non-COVID-19 group. In conclusion, OCT demonstrated that COVID-19 infection is associated with coronary pathological changes such as more plaque ruptures, erosions, and fibrosis as well as diffuse lesions. Further, COVID-19 infection is associated with the higher propensity for acute coronary events and the higher risk of MACE in CAD patients.

17.
Article in English | MEDLINE | ID: mdl-39010781

ABSTRACT

OBJECTIVE: To develop and validate a population pharmacokinetic (PPK) model of oral olanzapine in pediatric Chinese patients in order to individualize therapy in this population. METHODS: A total of 897 serum concentrations from 269 pediatric patients taking oral olanzapine (ages 8 to 17 years) were collected. Demographic parameters, biological characteristics and concomitant medications were investigated as covariates. The data was analyzed using a nonlinear mixed-effects modeling approach. Bootstrapping (1000 runs), normalized prediction distribution error (NPDE), and external validation of 62 patients were employed. Simulations were performed to explore the individualized dosing regimens in various situations. RESULTS: The one-compartment model with first-order absorption and elimination had an apparent clearance (CL/F) of 10.38 L/h, a distribution volume (V/F) of 9.41 L/kg and an absorption rate constant (Ka) fixed at 0.3 h-1. The equation was CL∕F (L∕h) = 10.38 × (body weight∕60)0.25 ×1.33 (if male) × 0.71 (if co-occurrence of infection) × 0.51 (if co-therapy with fluvoxamine) × 1.27 (if co-therapy with sertraline) × 1.43 (if co-therapy with valproate). The final model had satisfactory stability, robustness, and predictive ability. The results from a simulation suggested the oral olanzapine doses required for male and female pediatric patients weighing between 40-60 kg without co-medication were 10-15 mg/day and 7.5-10 mg/day, respectively, and dosage adjustments should be based on sex and body weight; and co-administrated with valproate, sertraline, or fluvoxamine. CONCLUSION: This model may help individualize optimum dosing of oral olanzapine for pediatric patients.

18.
Int J Mol Sci ; 25(13)2024 Jul 08.
Article in English | MEDLINE | ID: mdl-39000589

ABSTRACT

Mitogen-activated protein kinase kinase 1 (MAPK kinase 1, MEK1) is a key kinase in the mitogen-activated protein kinase (MAPK) signaling pathway. MEK1 mutations have been reported to lead to abnormal activation that is closely related to the malignant growth and spread of various tumors, making it an important target for cancer treatment. Targeting MEK1, four small-molecular drugs have been approved by the FDA, including Trametinib, Cobimetinib, Binimetinib, and Selumetinib. Recently, a study showed that modification with dehydroalanine (Dha) can also lead to abnormal activation of MEK1, which has the potential to promote tumor development. In this study, we used molecular dynamics simulations and metadynamics to explore the mechanism of abnormal activation of MEK1 caused by the Dha modification and predicted the inhibitory effects of four FDA-approved MEK1 inhibitors on the Dha-modified MEK1. The results showed that the mechanism of abnormal activation of MEK1 caused by the Dha modification is due to the movement of the active segment, which opens the active pocket and exposes the catalytic site, leading to sustained abnormal activation of MEK1. Among four FDA-approved inhibitors, only Selumetinib clearly blocks the active site by changing the secondary structure of the active segment from α-helix to disordered loop. Our study will help to explain the mechanism of abnormal activation of MEK1 caused by the Dha modification and provide clues for the development of corresponding inhibitors.


Subject(s)
Alanine , MAP Kinase Kinase 1 , Molecular Dynamics Simulation , MAP Kinase Kinase 1/metabolism , MAP Kinase Kinase 1/chemistry , Alanine/analogs & derivatives , Alanine/chemistry , Alanine/pharmacology , Alanine/metabolism , Humans , Catalytic Domain , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Enzyme Activation/drug effects , Benzimidazoles/pharmacology , Benzimidazoles/chemistry
19.
Curr Med Sci ; 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38900385

ABSTRACT

OBJECTIVE: Icariin (ICA) has a good neuroprotective effect and can upregulate neuronal basal autophagy in naturally aging rats. Mitochondrial dysfunction is associated with brain aging-related neurodegenerative diseases. Abnormal opening of the mitochondrial permeability transition pore (mPTP) is a crucial factor in mitochondrial dysfunction and is associated with excessive autophagy. This study aimed to explore that ICA protects against neuronal injury by blocking the mPTP opening and down-regulating autophagy levels in a D-galactose (D-gal)-induced cell injury model. METHODS: A cell model of neuronal injury was established in rat pheochromocytoma cells (PC12 cells) treated with 200 mmol/L D-gal for 48 h. In this cell model, PC12 cells were pre-treated with different concentrations of ICA for 24 h. MTT was used to detect cell viability. Senescence associated ß-galactosidase (SA-ß-Gal) staining was used to observe cell senescence. Western blot analysis was performed to detect the expression levels of a senescence-related protein (p21), autophagy markers (LC3B, p62, Atg7, Atg5 and Beclin 1), mitochondrial fission and fusion-related proteins (Drp1, Mfn2 and Opa1), and mitophagy markers (Pink1 and Parkin). The changes of autophagic flow were detected by using mRFP-GFP-LC3 adenovirus. The intracellular ultrastructure was observed by transmission electron microscopy. Immunofluorescence was used to detect mPTP, mitochondrial membrane potential (MMP), mitochondrial reactive oxygen species (mtROS) and ROS levels. ROS and apoptosis levels were detected by flow cytometry. RESULTS: D-gal treatment significantly decreased the viability of PC12 cells, and markedly increased the SA-ß-Gal positive cells as compared to the control group. With the D-gal stimulation, the expression of p21 was significantly up-regulated. Furthermore, D-gal stimulation resulted in an elevated LC3B II/I ratio and decreased p62 expression. Meanwhile, autophagosomes and autolysosomes were significantly increased, indicating abnormal activation of autophagy levels. In addition, in this D-gal-induced model of cell injury, the mPTP was abnormally open, the ROS generation was continuously increased, the MMP was gradually decreased, and the apoptosis was increased. ICA effectively improved mitochondrial dysfunction to protect against D-gal-induced cell injury and apoptosis. It strongly inhibited excessive autophagy by blocking the opening of the mPTP. Cotreatment with ICA and an mPTP inhibitor (cyclosporin A) did not ameliorate mitochondrial dysfunction. However, the protective effects were attenuated by cotreatment with ICA and an mPTP activator (lonidamine). CONCLUSION: ICA inhibits the activation of excessive autophagy and thus improves mitochondrial dysfunction by blocking the mPTP opening.

20.
Zhen Ci Yan Jiu ; 49(6): 634-640, 2024 Jun 25.
Article in English, Chinese | MEDLINE | ID: mdl-38897808

ABSTRACT

The application of acupuncture and moxibustion in alleviating the adverse effects of chemotherapy drugs has been widely recognized at home and abroad, but the studies have been rarely summarized for the enhanced anti-tumor effect and its mechanism of acupuncture and moxibustion to synergize the chemotherapy drugs. This paper reviewed the clinical and basic studies on the synergism of chemotherapy with acupuncture and moxibustion in recent years. It was found that chemotherapy synergized with acupuncture and moxibustion can suppress cancer to a certain extent and improve the quality of life in patients. The effect mechanism of acupuncture and moxibustion combined with chemotherapy drugs is related to promoting tumor cell apoptosis, improving the immune and vascular microenvironment, and advancing chemotherapy drug enrichment on the affected area. It provides the evidences and ideas for enhancing the effect of chemotherapy by delivering acupuncture and moxibustion as an adjuvant therapy.


Subject(s)
Acupuncture Therapy , Antineoplastic Agents , Moxibustion , Neoplasms , Humans , Neoplasms/therapy , Neoplasms/drug therapy , Animals , Combined Modality Therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...