Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-435037

ABSTRACT

New SARS-CoV-2 variants that have accumulated multiple mutations in the spike (S) glycoprotein enable increased transmission and resistance to neutralizing antibodies. Here, we study the antigenic and structural impacts of the S protein mutations from four variants, one that was involved in transmission between minks and humans, and three that rapidly spread in human populations and originated in the United Kingdom, Brazil or South Africa. All variants either retained or improved binding to the ACE2 receptor. The B.1.1.7 (UK) and B.1.1.28 (Brazil) spike variants showed reduced binding to neutralizing NTD and RBD antibodies, respectively, while the B.1.351 (SA) variant showed reduced binding to both NTD- and RBD-directed antibodies. Cryo-EM structural analyses revealed allosteric effects of the mutations on spike conformations and revealed mechanistic differences that either drive inter-species transmission or promotes viral escape from dominant neutralizing epitopes. HighlightsO_LICryo-EM structures reveal changes in SARS-CoV-2 S protein during inter-species transmission or immune evasion. C_LIO_LIAdaptation to mink resulted in increased ACE2 binding and spike destabilization. C_LIO_LIB.1.1.7 S mutations reveal an intricate balance of stabilizing and destabilizing effects that impact receptor and antibody binding. C_LIO_LIE484K mutation in B.1.351 and B.1.1.28 S proteins drives immune evasion by altering RBD conformation. C_LIO_LIS protein uses different mechanisms to converge upon similar solutions for altering RBD up/down positioning. C_LI

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-335299

ABSTRACT

The SARS-CoV-2 spike (S) protein is the target of vaccine design efforts to end the COVID-19 pandemic. Despite a low mutation rate, isolates with the D614G substitution in the S protein appeared early during the pandemic, and are now the dominant form worldwide. Here, we analyze the D614G mutation in the context of a soluble S ectodomain construct. Cryo-EM structures, antigenicity and proteolysis experiments suggest altered conformational dynamics resulting in enhanced furin cleavage efficiency of the G614 variant. Furthermore, furin cleavage altered the conformational dynamics of the Receptor Binding Domains (RBD) in the G614 S ectodomain, demonstrating an allosteric effect on the RBD dynamics triggered by changes in the SD2 region, that harbors residue 614 and the furin cleavage site. Our results elucidate SARS-CoV-2 spike conformational dynamics and allostery, and have implications for vaccine design. HighlightsO_LISARS-CoV-2 S ectodomains with or without the K986P, V987P mutations have similar structures, antigenicity and stability. C_LIO_LIThe D614G mutation alters S protein conformational dynamics. C_LIO_LID614G enhances protease cleavage susceptibility at the S protein furin cleavage site. C_LIO_LICryo-EM structures reveal allosteric effect of changes at the S1/S2 junction on RBD dynamics. C_LI

SELECTION OF CITATIONS
SEARCH DETAIL
...