Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 124(8): 080501, 2020 Feb 28.
Article in English | MEDLINE | ID: mdl-32167314

ABSTRACT

The only known way to study quantum field theories in nonperturbative regimes is using numerical calculations regulated on discrete space-time lattices. Such computations, however, are often faced with exponential signal-to-noise challenges that render key physics studies untenable even with next generation classical computing. Here, a method is presented by which the output of small-scale quantum computations on noisy intermediate-scale quantum era hardware can be used to accelerate larger-scale classical field theory calculations through the construction of optimized interpolating operators. The method is implemented and studied in the context of the 1+1-dimensional Schwinger model, a simple field theory which shares key features with the standard model of nuclear and particle physics.

2.
Phys Rev Lett ; 122(7): 072003, 2019 Feb 22.
Article in English | MEDLINE | ID: mdl-30848655

ABSTRACT

The distributions of pressure and shear forces inside the proton are investigated using lattice quantum chromodynamics (LQCD) calculations of the energy momentum tensor, allowing the first model-independent determination of these fundamental aspects of proton structure. This is achieved by combining recent LQCD results for the gluon contributions to the energy momentum tensor with earlier calculations of the quark contributions. The utility of LQCD calculations in exploring, and supplementing, the assumptions in a recent extraction of the pressure distribution in the proton from deeply virtual Compton scattering is also discussed. Based on this study, the target kinematics for experiments aiming to determine the pressure and shear distributions with greater precision at Thomas Jefferson National Accelerator Facility and a future electron ion collider are investigated.

3.
Phys Rev Lett ; 114(9): 091802, 2015 Mar 06.
Article in English | MEDLINE | ID: mdl-25793800

ABSTRACT

The strange contribution to the electric and magnetic form factors of the nucleon is determined at a range of discrete values of Q^{2} up to 1.4 GeV^{2}. This is done by combining a recent analysis of lattice QCD results for the electromagnetic form factors of the octet baryons with experimental determinations of those quantities. The most precise result is a small negative value for the strange magnetic moment: G_{M}^{s}(Q^{2}=0)=-0.07±0.03µ_{N}. At larger values of Q^{2} both the electric and magnetic form factors are consistent with zero to within 2 standard deviations.

4.
Phys Rev Lett ; 110(20): 202001, 2013 May 17.
Article in English | MEDLINE | ID: mdl-25167398

ABSTRACT

The relatively small fraction of the spin of the proton carried by its quarks presents a major challenge to our understanding of the strong interaction. Traditional efforts to explore this problem have involved new and imaginative experiments and QCD based studies of the nucleon. We propose a new approach to the problem that exploits recent advances in lattice QCD. In particular, we extract values for the spin carried by the quarks in other members of the baryon octet in order to see whether the suppression observed for the proton is a general property or depends significantly on the baryon structure. We compare these results with the values for the spin fractions calculated within a model that includes the effects of confinement, relativity, gluon exchange currents, and the meson cloud required by chiral symmetry, finding a very satisfactory level of agreement given the precision currently attainable.

5.
Phys Rev Lett ; 107(9): 092004, 2011 Aug 26.
Article in English | MEDLINE | ID: mdl-21929231

ABSTRACT

Recent lattice QCD calculations have reported evidence for the existence of a bound state with strangeness -2 and baryon number 2 at quark masses somewhat higher than the physical values. By developing a description of the dependence of this binding energy on the up, down and strange quark masses that allows a controlled chiral extrapolation, we explore the hypothesis that this state is to be identified with the H dibaryon. Taking as input the recent results of the HAL and NPLQCD Collaborations, we show that the H dibaryon is likely to be unbound by 13±14 MeV at the physical point.

SELECTION OF CITATIONS
SEARCH DETAIL
...