Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38812379

ABSTRACT

A series of novel Ru(II)/Ir(III)/Re(I)-based organometallic complexes [Ru2L1, Ru2L2, Ir2L1, Ir2L2, Re2L1, and Re2L2] have been synthesized to assess their potency and selectivity against multiple cancer cells A549, HCT-116, and HCT-116 colon CSCs. The cytotoxic screening of the synthesized complexes has revealed that complex Ru2L1 and Ir2L2 are two proficient complexes among all, but Ru2L1 is the most potent complex. A significant binding constant value was observed for DNA and BSA in all complexes. Significant lipophilic properties allow them to penetrate cancer cell membranes, and substantial quantum yield (ϕf) values support bioimaging potential. Again, these complexes are particular for mitochondrial localization and produce a profuse amount of ROS to damage the mitochondrial DNA and then G1 phase cell-cycle arrest. Protein expression analysis unveiled that pro-apoptotic Bax protein overexpressed in Ru2L1-treated cells, whereas antiapoptotic Bcl-2 protein was expressed twofold in Ir2L2-treated cells, which correlated with autophagy reticence.

2.
Life Sci ; 333: 122141, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37797688

ABSTRACT

Toxicity caused by chronic hyperglycemia is a significant factor affecting skeletal muscle myogenesis, resulting in diabetic myopathy. Chronic and persistent hyperglycemia causes activation of the atrophy-related pathways in the skeletal muscles, which eventually results in inflammation and muscle degeneration. To counteract this process, various bioactive compound has been studied for their reversal or hypertrophic effect. In this study, we explored the molecular mechanisms associated with reversing glucotoxicity's effect in C2C12 cells by arachidonic acid (AA). We found a substantial increase in the pro-inflammatory cytokines and ROS production in hyperglycemic conditions, mitigated by AA supplementation. We found that AA supplementation restored protein synthesis that was downregulated under glucotoxicity conditions. AA enhanced myogenesis by suppressing high glucose induced inflammation and ROS production and enhancing protein synthesis. These results imply that AA has cytoprotective actions against hyperglycemia-induced cytotoxicity.


Subject(s)
Hyperglycemia , Muscular Atrophy , Humans , Arachidonic Acid/metabolism , Reactive Oxygen Species/metabolism , Muscular Atrophy/metabolism , Muscle, Skeletal/metabolism , Hyperglycemia/metabolism , Inflammation/pathology
3.
ACS Omega ; 8(13): 12283-12297, 2023 Apr 04.
Article in English | MEDLINE | ID: mdl-37033791

ABSTRACT

Triple-negative breast cancer (TNBC) is an extremely vicious subtype of human breast cancer having the worst prognosis along with strong invasive and metastatic competency. Hence, it can easily invade into blood vessels, and presently, no targeted therapeutic approach is available to annihilate this type of cancer. Metal complexes have successfully stepped into the anticancer research and are now being applauded due to their anticancer potency after the discovery of cisplatin. Many of these metal complexes are also well recognized for their activity toward breast cancer. As the TNBC is a very dangerous subtype and has long been a challenging ailment to treat, we have intended to develop a few brand new mixed metallic Ru(II)/Ir(III)/Re(I)-2,2'-bipyrimidine complexes [L'Re2], [L'RuRe], and [L'IrRe] to abate the unbridled proliferation of TNBC cells. The potency of the complexes against TNBC cells has been justified using MDA-MB-468 TNBC cell lines where complex [L'IrRe] has displayed significant potency among all the three complexes with an IC50 value of 24.12 µM. The complex [L'IrRe] has been competent to cause apoptosis of TNBC cells through inhibition of the G2/M phase in the cell cycle in association with a profuse amount of ROS generation and mitochondrial depolarization.

4.
ACS Appl Bio Mater ; 6(2): 410-424, 2023 02 20.
Article in English | MEDLINE | ID: mdl-36638050

ABSTRACT

Due to a number of unpleasant considerations, marketed drugs have steadily lost their importance in the treatment of cancer. In order to find a viable cancer cell diagnostic agent, we therefore focused on metal complexes that displayed target adequacy, permeability to cancer cells, high standard water solubility, cytoselectivity, and luminescent behavior. In this aspect, luminescent 11-{naphthalen-1-yl} dipyrido [3,2-a:2',3'-c] phenazine based Ru(II)/Ir(III)/Re(I) complexes have been prepared for HCT-116 colorectal cancer stem cell therapy. Our study successfully established the possible cytotoxicity of IrL complex at different doses on HCT-116 colorectal cancer stem cells (CRCSCs). Additionally, an immunochemistry analysis of the complex IrL showed that the molecule was subcellularly localized in the nucleus and other regions of the cytoplasm, where it caused nuclear DNA damage and mitochondrial dysfunction. The level of BAX and Bcl-2 was further quantified by qRT-PCR. The expression of proapoptotic BAX showed increased expression in the complex IrL-treated cell compared to the control, indicating the potential of complex IrL for apoptotic induction. Upon further validation, complex IrL was developed as an inhibitor of autophagy for the eradication of cancer stem cells.


Subject(s)
Colorectal Neoplasms , Coordination Complexes , Neoplastic Stem Cells , Phenazines , Humans , bcl-2-Associated X Protein/metabolism , Colorectal Neoplasms/drug therapy , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Coordination Complexes/therapeutic use , DNA/chemistry , Phenazines/chemistry , Phenazines/metabolism , Luminescence , HCT116 Cells , Neoplastic Stem Cells/drug effects
5.
Cell Biol Int ; 47(4): 742-753, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36573403

ABSTRACT

Breast cancer (BC) remains one of the deadliest and frequently diagnosed metastatic cancers worldwide. Cancer stem cells (CSCs) are the cell population within the tumor niche, having an epithelial to mesenchymal (EMT) transition phenotype, high self-renewal, vigorous metastatic capacity, drug resistance, and tumor relapse. Identification of targets for induction of apoptosis is essential to provide novel therapeutic approaches in BC. Our earlier studies showed that Vitamin C induces apoptotic cell death by losing redox balance in TNBC CSCs. In this study, we have attempted to identify previously unrecognized CSC survival factors that can be used as druggable targets for bCSCs apoptosis regulators isolated from the TNBC line, MDA MB 468. After a thorough literature review, Oct-4 was identified as the most promising marker for its unique abundance in cancer and absence in normal cells and the contribution of Oct-4 to the sustenance of cancer cells. We then validated a very high expression of Oct-4 in the MDA MB 468 bCSCs population using flow-cytometry. The loss of Oct-4 was carried out using small interfering RNA (siRNA)-mediated knockdown in the bCSCs, followed by assessing for cellular apoptosis. Our results indicated that Oct-4 knockdown induced cell death, changes in cellular morphology, inhibited mammosphere formation, and positive for Annexin-V expression, thereby indicating the role of Oct-4 in bCSC survival. Moreover, our findings also suggest the direct interaction between Oct-4 and Vitamin C using in silico docking. This data, hence, contributes towards novel information about Oct-4 highlighting this molecule as a novel survival factor in bCSCs.


Subject(s)
Breast Neoplasms , Triple Negative Breast Neoplasms , Humans , Female , Triple Negative Breast Neoplasms/metabolism , Octamer Transcription Factor-3/metabolism , Epithelial-Mesenchymal Transition , Vitamins , Neoplastic Stem Cells/metabolism , Ascorbic Acid , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation , Hyaluronan Receptors/metabolism
6.
RSC Adv ; 12(19): 11953-11966, 2022 Apr 13.
Article in English | MEDLINE | ID: mdl-35481100

ABSTRACT

To reduce the side effects of marketed cancer drugs against triple negative breast cancer cells we have reported mitochondria targeting half-sandwich iridium(iii)-Cp*-arylimidazophenanthroline complexes for MDA-MB-468 cell therapy and diagnosis. Out of five Ir(iii) complexes (IrL1-IrL5), [iridium(iii)-Cp*-2-(naphthalen-1-yl)-1H-imidazo[4,5-f][1,10]phenanthroline]PF6 (IrL1) has exhibited the best cytoselectivity against MDA-MB-468 cells compared to normal HaCaT cells along with excellent binding efficacy with DNA as well as serum albumin. The subcellular localization study of the complex revealed the localization of the compound in cytoplasm thereby pointing to a possible mitochondrial localization and consequent mitochondrial dysfunction via MMP alteration and ROS generation. Moreover, the IrL1 complex facilitated a substantial G1 phase cell-cycle arrest of MDA-MB-468 cells at the highest tested concentration of 5 µM. The study verdicts support the prospective therapeutic potential of the IrL1 complex in the treatment and eradication of triple negative breast cancer cells. These results validate that these types of scaffolds will be fairly able to exert great potential for tumor diagnosis as well as therapy in the near future.

7.
Dalton Trans ; 51(14): 5494-5514, 2022 Apr 05.
Article in English | MEDLINE | ID: mdl-35293923

ABSTRACT

Herein, we have introduced a series of iridium(III)-Cp*-(imidazo[4,5-f][1,10]phenanthrolin-2-yl)phenol complexes via a convenient synthetic methodology, which act as hypoxia active and glutathione-resistant anticancer metallotherapeutics. The [IrIII(Cp*)(L5)(Cl)](PF6) (IrL5) complex exhibited the best cytoselectivity, GSH resistance and hypoxia effectivity in HeLa and Caco-2 cells among the synthesized complexes. IrL5 also exhibited highly cytotoxic effects on the HCT-116 CSC cell line. This complex was localized in the mitochondria and subsequent mitochondrial dysfunction was observed via MMP alteration and ROS generation on colorectal cancer stem cells. Cell cycle analysis also established the potential of this complex in mediating G2/M phase cell cycle arrest.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Neoplasms , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Apoptosis , Caco-2 Cells , Cell Line, Tumor , Cell Proliferation , Coordination Complexes/metabolism , Coordination Complexes/pharmacology , Glutathione/metabolism , Humans , Hypoxia/metabolism , Iridium/pharmacology , Mitochondria/metabolism , Neoplasms/metabolism , Neoplastic Stem Cells/metabolism , Phenol
SELECTION OF CITATIONS
SEARCH DETAIL
...