Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 13(15): 18358-18364, 2021 Apr 21.
Article in English | MEDLINE | ID: mdl-33821609

ABSTRACT

Surface modification is used to dramatically alter the thermal properties of a bulk metallic material. Thermal barrier coatings (TBCs) are typically applied using spray deposition or laser-based techniques to create a ceramic coating on a metal substrate. In this study, an effective TBC is created directly on a metallic substrate by inducing surface chemical reactions. Aluminum-zirconium (Al-Zr) substrates are used to induce surface-limited reactions that produce a 75-80% decrease in bulk thermal conductivity and diffusivity, respectively. The substrates are cylindrical disks 12.6 mm diameter and 2 mm thickness. Thermal properties are measured using laser flash analysis (LFA) at incrementally elevated temperatures. Focused ion beam (FIB) slicing of the substrate coupled with scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) show that the substrate oxidized only along the outer 20 µm of the bulk surface. The layer thickness is significantly less than typical TBCs that can range from 50 to 300 µm yet the 20 µm coating still achieves a dramatic reduction in thermal transport properties. Additionally, thermal analysis reveals a sequence of exothermic reactions starting at 439 °C that include both intermetallic (i.e., ZrAl3) and oxidation (i.e., Al2O3 and ZrO) reactions suggesting continuous surface bonding at the coating-metal interface. The onset of exothermic activity coincides with the transition in thermal properties measured using LFA. These results show that surface oxidation reactions could be used to dramatically alter the thermal transport properties of a metal substrate.

2.
Environ Sci Pollut Res Int ; 24(22): 18479-18493, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28646309

ABSTRACT

The aim of this study is to investigate the effect of the polymethyl acrylate (PMA) additive on the formation of particulate matter (PM) and nitrogen oxide (NOX) emission from a diesel coconut and/or Calophyllum inophyllum biodiesel-fueled engine. The physicochemical properties of 20% of coconut and/or C. inophyllum biodiesel-diesel blend (B20), 0.03 wt% of PMA with B20 (B20P), and diesel fuel were measured and compared to ASTM D6751, D7467, and EN 14214 standard. The test results showed that the addition of PMA additive with B20 significantly improves the cold-flow properties such as pour point (PP), cloud point (CP), and cold filter plugging point (CFPP). The addition of PMA additives reduced the engine's brake-specific energy consumption of all tested fuels. Engine emission results showed that the additive-added fuel reduce PM concentration than B20 and diesel, whereas the PM size and NOX emission both increased than B20 fuel and baseline diesel fuel. Also, the effect of adding PMA into B20 reduced Carbon (C), Aluminum (Al), Potassium (K), and volatile materials in the soot, whereas it increased Oxygen (O), Fluorine (F), Zinc (Zn), Barium (Ba), Chlorine (Cl), Sodium (Na), and fixed carbon. The scanning electron microscope (SEM) results for B20P showed the lower agglomeration than B20 and diesel fuel. Therefore, B20P fuel can be used as an alternative to diesel fuel in diesel engines to lower the harmful emissions without compromising the fuel quality.


Subject(s)
Air Pollutants/analysis , Biofuels/analysis , Gasoline/analysis , Nitrogen Oxides/analysis , Particulate Matter/analysis , Polymethacrylic Acids/chemistry , Vehicle Emissions/analysis , Environmental Monitoring
SELECTION OF CITATIONS
SEARCH DETAIL
...