Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Molecules ; 28(22)2023 Nov 08.
Article in English | MEDLINE | ID: mdl-38005206

ABSTRACT

The study is dedicated to the consideration of lower alkyl ethers of glycerol as potential components of low-melting technical fluids (e.g., heat transfer fluids, hydraulic fluids, aircraft de-icing fluids, etc.). Four isomeric mixtures of glycerol ethers (GMME-monomethyl; GDME-dimethyl; GMEE-monoethyl; GDEE-diethyl) were synthesized from epichlorohydrin and methanol/ethanol in the presence of sodium and subjected to detailed characterization as pure compounds and as aqueous solutions (30-90 vol%). The temperature and concentration dependencies of density, viscosity, cloud point, boiling range, specific heat capacity, thermal conductivity, and rubber swelling were obtained. On the basis of the data obtained, a comparison was made between the aqueous solutions of glycerol ethers and of other common bases for low-melting liquids (glycerol, ethylene glycol, and propylene glycol). Pure glycerol ethers could potentially be used as technical fluids in a very wide temperature range-from -114 to 150 °C. It was further demonstrated that in low temperature applications (e.g., in low-temperature chiller systems) the glycerol-ether-based aqueous heat transfer fluids could provide enhanced efficiency when compared to the glycerol- or propylene-glycol-based ones due to their lower viscosities and favorable environmental properties.

2.
Materials (Basel) ; 16(17)2023 Sep 02.
Article in English | MEDLINE | ID: mdl-37687732

ABSTRACT

We have synthesized and studied three new chiral substances as additives to a nematic liquid crystal. The difference in the optical activity and chemical structure of additive molecules results in the appearance of the chiral nematic phase and the change in both the compatibility of the mixture components and temperature range of the liquid crystal phase. The role of additives with fundamentally different structures and optical activities is shown. The increase in the TNI that is observed in mixtures with 4-[(2S)-(+)-2-Methylbutoxy]benzoic acid indicate the possibility of the increase in order caused by the formation of molecularly rigid and elongated dimers of the additive, which was confirmed using infrared spectra. The doping of the nematic liquid crystal with (2R)-(+)-2-[4-[2-Chloro-4-(4-hexylphenyl)phenyl]phenoxy]propanoic acid causes the lowering of TNI. The binol derivative S-(+)-6-[1-[2-(5-Carboxypentoxy)naphthalen-1-yl]naphthalen-2-yl] oxyhexanoic acid has the highest chirality among the additives used. One can explain the effects observed in terms of the role of size, shape, and compatibility with the nematic matrix as shown by the molecules that are used as additives.

3.
Polymers (Basel) ; 15(11)2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37299378

ABSTRACT

This study presents preparing and characterization of polyacrylonitrile (PAN) fibers containing various content of tetraethoxysilane (TEOS) incorporated via mutual spinning solution or emulsion using wet and mechanotropic spinning methods. It was shown that the presence of TEOS in dopes does not affect their rheological properties. The coagulation kinetics of complex PAN solution was investigated by optical methods on the solution drop. It was shown that during the interdiffusion process phase separation occurs and TEOS droplets form and move in the middle of the dope's drop. Mechanotropic spinning induces the TEOS droplets to move to the fiber periphery. The morphology and structure of the fibers obtained were investigated by scanning and transmission electron microscopy, as well as X-ray diffraction methods. It was shown that during fiber spinning stages the transformation of the TEOS drops into solid silica particles takes place as a result of hydrolytic polycondensation. This process can be characterized as the sol-gel synthesis. The formation of nano-sized (3-30 nm) silica particles proceeds without particles aggregation, but in a mode of the distribution gradient along the fiber cross-section leading to the accumulation of the silica particles either in the fiber center (wet spinning) or in the fiber periphery (mechanotropic spinning). The prepared composite fibers were carbonized and according to XRD analysis of carbon fibers, the clear peaks corresponding to SiC were observed. These findings indicate the useful role of TEOS as a precursor agent for both, silica in PAN fibers and silicon carbide in carbon fibers that has potential applications in some advanced materials with high thermal properties.

4.
Polymers (Basel) ; 15(9)2023 Apr 30.
Article in English | MEDLINE | ID: mdl-37177303

ABSTRACT

Fluorinated polymers are attractive due to their special thermal, surface, gas separation, and other properties. In this study, new diblock, multiblock, and random copolymers of cyclooctene with two fluorinated norbornenes, 5-perfluorobutyl-2-norbornene and N-pentafluorophenyl-exo-endo-norbornene-5,6-dicarboximide, are synthesized by ring-opening metathesis copolymerization and macromolecular cross-metathesis in the presence of the first- to third-generation Grubbs' Ru-catalysts. Their thermal, surface, bulk, and solution characteristics are investigated and compared using differential scanning calorimetry, water contact angle measurements, gas permeation, and light scattering, respectively. It is demonstrated that they are correlated with the chain structure of the copolymers. The properties of multiblock copolymers are generally closer to those of diblock copolymers than of random ones, which can be explained by the presence of long blocks capable of self-organization. In particular, diblock and multiblock fluorine-imide-containing copolymers show a tendency to form micelles in chloroform solutions well below the overlap concentration. The results obtained may be of interest to a wide range of researchers involved in the design of functional copolymers.

5.
Polymers (Basel) ; 14(23)2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36501608

ABSTRACT

An experimental quasi-equilibrium phase diagram of the polyvinylidene fluoride (PVDF)-camphor mixture is constructed using an original optical method. For the first time, it contains a boundary curve that describes the dependence of camphor solubility in the amorphous regions of PVDF on temperature. It is argued that this diagram cannot be considered a full analogue of the eutectic phase diagrams of two low-molar-mass crystalline substances. The phase diagram is used to interpret the polarized light hot-stage microscopy data on cooling the above mixtures from a homogeneous state to room temperature and scanning electron microscopy data on the morphology of capillary-porous bodies formed upon camphor removal. Based on our calorimetry and X-ray studies, we put in doubt the possibility of incongruent crystalline complex formation between PVDF and camphor previously suggested by Dasgupta et al. (Macromolecules 2005, 38, 5602-5608). We also describe and discuss the high-temperature crystalline structure of racemic camphor, which is not available in the modern literature.

6.
Polymers (Basel) ; 14(3)2022 Jan 22.
Article in English | MEDLINE | ID: mdl-35160434

ABSTRACT

Commercial metathesis polynorbornene is used for the fabrication of high-damping coatings and bulk materials that dissipate vibration and impact energies. Functionalization of this non-polar polymer can improve its adhesive, gas barrier, and other properties, thereby potentially expanding its application area. With this aim, the post-modification of polynorbornene was carried out by inserting ethylene-vinyl acetate-vinyl alcohol blocks into its backbone via the cross-metathesis of polynorbornene with poly(5-acetoxy-1-octenylene) and subsequent deacetylation and hydrogenation of the obtained multiblock copolymers. For the first time, epoxy groups were introduced into the main chains of these copolymers, followed by the oxirane ring opening reaction. The influence of post-modification on the thermal, gas separation, and mechanical properties of the new copolymers was studied. It was shown that the gas permeability of the copolymer significantly depends on its composition, as well as on the amounts of hydroxyl and epoxy groups. The developed methods efficiently improve the barrier properties, reducing the oxygen permeability by 15-33 times in comparison with polynorbornene. The obtained results are promising for various applications and can be extended to a broader family of polydienes and other polymers containing backbone double bonds.

7.
ACS Appl Mater Interfaces ; 13(30): 36190-36200, 2021 Aug 04.
Article in English | MEDLINE | ID: mdl-34286582

ABSTRACT

Embedding quantum dots (QDs) into an organic matrix of controllable order requires the identification of their structural characteristics. This analysis is necessary for the creation of anisotropic composites that are sensitive to external stimuli. We have studied the QD structures formed during the single-step synthesis of CdSe/ZnS QDs and their transformations after the initial ligand's substitution for another ligand. This single-step process leads to the formation of the core/shell structure. We detect the presence of two oleic acid residues ionically connected to Zn and Cd. At the same time, the amount of Cd oleate at the surface is very small. We observe the ligand exchange process at the surface of the core/shell QDs. The oleic acid residues are substituted by terphenyl-containing (TERPh-COOH) aromatic acid residues. The reaction between CdSe/ZnS carrying TOP and oleic acid residues ionically bound with QDs and terphenyl-containing acid leads to the coexistence of multiple ligands on the QD surface at a ratio of 11:6:33 for TOP/OA/TERPh-COOH.

8.
Polymers (Basel) ; 13(11)2021 May 27.
Article in English | MEDLINE | ID: mdl-34072052

ABSTRACT

We investigate the structure-property relations of the multiblock copolymers of norbornene with cyclododecene synthesized via the macromolecular cross-metathesis reaction between amorphous polynorbornene and semicrystalline polydodecenamer in the presence of the first-generation Grubbs catalyst. By adjusting the reaction time, catalyst amount, and composition of the initial system, we obtain a set of statistical multiblock copolymers that differ in the composition and average length of norbornene and dodecenylene unit sequences. Structural, thermal, and mechanical characterization of the copolymers with NMR, XRD, DSC (including thermal fractionation by successive self-nucleation and annealing), and rotational rheology allows us to relate the reaction conditions to the average length of crystallizable unit sequences, thicknesses of corresponding lamellas, and temperatures of their melting. We demonstrate that isolated dodecenylene units can be incorporated into crystalline lamellas so that even nearly random copolymers should retain crystallinity. Weak high-temperature endotherms observed in the multiblock copolymers of norbornene with cyclododecene and other cycloolefins could indicate that the corresponding systems are microphase-separated in the melt state.

9.
Polymers (Basel) ; 13(11)2021 May 31.
Article in English | MEDLINE | ID: mdl-34072928

ABSTRACT

Low-temperature properties of high-density polyethylene (HDPE), low-density polyethylene (LDPE), linear low-density polyethylene (LLDPE), and their blends were studied. The analyzed low-temperature mechanical properties involve the deformation resistance and impact strength characteristics. HDPE is a bimodal ethylene/1-hexene copolymer; LDPE is a branched ethylene homopolymer containing short-chain branches of different length; LLDPE is a binary ethylene/1-butene copolymer and an ethylene/1-butene/1-hexene terpolymer. The samples of copolymers and their blends were studied by gel permeation chromatography (GPC), differential scanning calorimetry (DSC), 13С NMR spectroscopy, and dynamic mechanical analysis (DMA) using testing machines equipped with a cryochamber. It is proposed that such parameters as "relative elongation at break at -45 °C" and "Izod impact strength at -40 °C" are used instead of the ductile-to-brittle transition temperature to assess frost resistance properties because these parameters are more sensitive to deformation and impact at subzero temperatures for HDPE. LLDPE is shown to exhibit higher relative elongation at break at -45 °C and Izod impact strength at -20 ÷ 60 °C compared to those of LDPE. LLDPE terpolymer added to HDPE (at a content ≥ 25 wt.%) simultaneously increases flow properties and improves tensile properties of the blend at -45 °C. Changes in low-temperature properties as a function of molecular weight, MWD, crystallinity, and branch content were determined for HDPE, LLDPE, and their blends. The DMA data prove the resulting dependences. The reported findings allow one to understand and predict mechanical properties in the HDPE-LLDPE systems at subzero temperatures.

10.
Materials (Basel) ; 13(16)2020 Aug 07.
Article in English | MEDLINE | ID: mdl-32784713

ABSTRACT

Replacing the aqueous coagulation bath with an alcoholic one during spinning cellulose fibers (films) from solutions in N-methylmorpholine-N-oxide leads to a radical restructuring of the hydrogen bonds net of cellulose and, as a result, to a change in the structure and properties of the resulting material. By the method of optical interferometry, it was possible to identify the intrinsic features of the interaction of the solvent and isomeric alcohols and to construct phase diagrams of binary systems describing the crystalline equilibrium. Knowledge of the phase states of the system at different temperatures renders it possible to exclude the process of solvent crystallization and conduct the spinning in pseudo-homogeneous conditions. The structure and morphology of samples were studied using X-ray diffraction and scanning electron microscopy methods for a specific coagulant. When the solution under certain conditions is coagulated at contact with alcohol, the solvent may be in a glassy state, whereas, when at coagulation in water, an amorphous-crystalline structure is formed. The structural features of cellulose films obtained by coagulation of solutions with water and alcohols help to select potential engineering or functional materials (textile, packaging, membranes, etc.), in which their qualities will manifest to the best extent.

11.
J Phys Chem B ; 123(49): 10533-10546, 2019 12 12.
Article in English | MEDLINE | ID: mdl-31697496

ABSTRACT

An experimental phase diagram of the isotactic polypropylene-camphor system is constructed using an original optical method. It considerably deviates from the dynamic diagram, which can be obtained using conventional differential scanning calorimetry (DSC), and contains an additional boundary line that describes camphor solubility in the polymer. An accurate phase diagram makes it possible to perform a detailed and consistent thermodynamic analysis of the DSC, optical, and scanning electron microscopy data on the cooling of prehomogenized mixtures of different compositions, which leads to the formation of capillary-porous bodies via thermally induced phase separation. The removal of camphor results in the formation of polypropylene membranes, the morphology and functional properties of which, such as the total pore volume, mean pore size, permeability coefficient, and breaking stress, appear to be highly dependent on the composition of the initial binary system. It is shown that thermally induced phase separation induces the formation of microscopic cracks in the studied membranes. The crack density decreases with the polymer content in the initial system, but at 53 wt % of polypropylene, the membrane becomes completely impermeable to isopropanol despite the presence of large ∼4 µm pores, thus questioning the perspectives of its practical use. In general, the study makes it possible to achieve a deeper understanding of the membrane formation process via thermally induced phase separation in the mixtures of semicrystalline polymers with low molar mass substances.

12.
Beilstein J Nanotechnol ; 9: 616-627, 2018.
Article in English | MEDLINE | ID: mdl-29527437

ABSTRACT

A fast route to transfer Au nanoparticles from aqueous to organic media is proposed based on the use of a high molecular mass diblock copolymer of styrene and 2-vinylpyridine for ligand exchange at the nanoparticle surface. The method enables the preparation of stable sols of Au nanorods with sizes of up to tens of nanometers or Au nanospheres in various organic solvents. By comparing the optical absorbance spectra of Au hydro- and organosols with the data of numerical simulations of the surface plasmon resonance, we find that nanoparticles do not aggregate and confirm the transmission electron microscopy data regarding their shape and size. The proposed approach can be effective in preparing hybrid composites without the use of strong thiol and amine surfactants.

13.
Chemphyschem ; 16(5): 1071-8, 2015 Apr 07.
Article in English | MEDLINE | ID: mdl-25728757

ABSTRACT

The photoluminescence (PL) of CdSe quantum dots (QDs) that form stable nanocomposites with polymer liquid crystals (LCs) as smectic C hydrogen-bonded homopolymers from a family of poly[4-(n-acryloyloxyalkyloxy)benzoic acids] is reported. The matrix that results from the combination of these units with methoxyphenyl benzoate and cholesterol-containing units has a cholesteric structure. The exciton PL band of QDs in the smectic matrix is redshifted with respect to QDs in solution, whereas a blueshift is observed with the cholesteric matrix. The PL lifetimes and quantum yield in cholesteric nanocomposites are higher than those in smectic ones. This is interpreted in terms of a higher order of the smectic matrix in comparison to the cholesteric one. CdSe QDs in the ordered smectic matrix demonstrate a splitting of the exciton PL band and an enhancement of the photoinduced differential transmission. These results reveal the effects of the structure of polymer LC matrices on the optical properties of embedded QDs, which offer new possibilities for photonic applications of QD-LC polymer nanocomposites.

SELECTION OF CITATIONS
SEARCH DETAIL
...