Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
2.
Pest Manag Sci ; 73(2): 444-451, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27108479

ABSTRACT

BACKGROUND: Kochia (Kochia scoparia L.) is a highly competitive, non-native weed found throughout the western United States. Flumioxazin and indaziflam are two broad-spectrum pre-emergence herbicides that can control kochia in a variety of crop and non-crop situations; however, under dry conditions, these herbicides sometimes fail to control this important weed. There is very little information describing the effect of soil properties and soil moisture on the efficacy of these herbicides. RESULTS: Soil organic matter (SOM) explained the highest proportion of variability in predicting the herbicide dose required for 80% kochia growth reduction (GR80 ) for flumioxazin and indaziflam (R2 = 0.72 and 0.79 respectively). SOM had a greater impact on flumioxazin phytotoxicity compared to indaziflam. Flumioxazin and indaziflam kochia phytotoxicity was greatly reduced at soil water potentials below -200 kPa. CONCLUSION: Kochia can germinate at soil moisture potentials below the moisture required for flumioxazin and indaziflam activation, which means that kochia control is greatly influenced by the complex interaction between soil physical properties and soil moisture. This research can be used to gain a better understanding of how and why some weeds, like kochia, are so difficult to manage even with herbicides that normally provide excellent control. © 2016 Society of Chemical Industry.


Subject(s)
Bassia scoparia/physiology , Benzoxazines , Herbicides , Indenes , Phthalimides , Soil/chemistry , Triazines , Water/analysis , Germination/physiology
3.
Pest Manag Sci ; 72(6): 1124-32, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26224526

ABSTRACT

BACKGROUND: Crop residue removal for bioenergy production can alter soil hydrologic properties and the movement of agrochemicals to subsurface drains. The Root Zone Water Quality Model (RZWQM), previously calibrated using measured flow and atrazine concentrations in drainage from a 0.4 ha chisel-tilled plot, was used to investigate effects of 50 and 100% corn (Zea mays L.) stover harvest and the accompanying reductions in soil crust hydraulic conductivity and total macroporosity on transport of atrazine, metolachlor and metolachlor oxanilic acid (OXA). RESULTS: The model accurately simulated field-measured metolachlor transport in drainage. A 3 year simulation indicated that 50% residue removal reduced subsurface drainage by 31% and increased atrazine and metolachlor transport in drainage 4-5-fold when surface crust conductivity and macroporosity were reduced by 25%. Based on its measured sorption coefficient, approximately twofold reductions in OXA losses were simulated with residue removal. CONCLUSION: The RZWQM indicated that, if corn stover harvest reduces crust conductivity and soil macroporosity, losses of atrazine and metolachlor in subsurface drainage will increase owing to reduced sorption related to more water moving through fewer macropores. Losses of the metolachlor degradation product OXA will decrease as a result of the more rapid movement of the parent compound into the soil. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.


Subject(s)
Herbicides , Rhizosphere , Water Quality , Zea mays , Acetamides , Atrazine , Models, Theoretical , Water Movements
4.
Theor Appl Genet ; 128(2): 343-51, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25432092

ABSTRACT

KEY MESSAGE: New herbicide resistance traits in wheat were produced through the use of induced mutagenesis. While herbicide-resistant crops have become common in many agricultural systems, wheat has seen few introductions of herbicide resistance traits. A population of Hatcher winter wheat treated with ethyl methanesulfonate was screened with quizalofop to identify herbicide-resistant plants. Initial testing identified plants that survived multiple quizalofop applications. A series of experiments were designed to characterize this trait. In greenhouse studies the mutants exhibited high levels of quizalofop resistance compared to non-mutant wheat. Sequencing ACC1 revealed a novel missense mutation causing an alanine to valine change at position 2004 (Alopecurus myosuroides reference sequence). Plants carrying single mutations in wheat's three genomes (A, B, D) were identified. Acetyl co-enzyme A carboxylase in resistant plants was 4- to 10-fold more tolerant to quizalofop. Populations of segregating backcross progenies were developed by crossing each of the three individual mutants with wild-type wheat. Experiments conducted with these populations confirmed largely normal segregation, with each mutant allele conferring an additive level of resistance. Further tests showed that the A genome mutation conferred the greatest resistance and the B genome mutation conferred the least resistance to quizalofop. The non-transgenic herbicide resistance trait identified will enhance weed control strategies in wheat.


Subject(s)
Herbicide Resistance/genetics , Herbicides , Propionates , Quinoxalines , Triticum/genetics , Acetyl-CoA Carboxylase/genetics , Acetyl-CoA Carboxylase/metabolism , Alleles , DNA, Plant/genetics , Genome, Plant , Genotype , Mutation, Missense , Sequence Analysis, DNA
5.
Pest Manag Sci ; 71(7): 972-85, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25132142

ABSTRACT

BACKGROUND: Complex environmental models are frequently extrapolated to overcome data limitations in space and time, but quantifying data worth to such models is rarely attempted. The authors determined which field observations most informed the parameters of agricultural system models applied to field sites in Nebraska (NE) and Maryland (MD), and identified parameters and observations that most influenced prediction uncertainty. RESULTS: The standard error of regression of the calibrated models was about the same at both NE (0.59) and MD (0.58), and overall reductions in prediction uncertainties of metolachlor and metolachlor ethane sulfonic acid concentrations were 98.0 and 98.6% respectively. Observation data groups reduced the prediction uncertainty by 55-90% at NE and by 28-96% at MD. Soil hydraulic parameters were well informed by the observed data at both sites, but pesticide and macropore properties had comparatively larger contributions after model calibration. CONCLUSIONS: Although the observed data were sparse, they substantially reduced prediction uncertainty in unsampled regions of pesticide breakthrough curves. Nitrate evidently functioned as a surrogate for soil hydraulic data in well-drained loam soils conducive to conservative transport of nitrogen. Pesticide properties and macropore parameters could most benefit from improved characterization further to reduce model misfit and prediction uncertainty.


Subject(s)
Herbicides/chemistry , Soil/chemistry , Acetamides/chemistry , Calibration , Maryland , Models, Theoretical , Nebraska , Pesticide Residues/chemistry , Porosity , Uncertainty , Water Pollutants, Chemical/chemistry
6.
Pest Manag Sci ; 70(9): 1329-39, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24339388

ABSTRACT

This review is both a retrospective (what have we missed?) and prospective (where are we going?) examination of weed control and technology, particularly as it applies to herbicide-resistant weed management (RWM). Major obstacles to RWM are discussed, including lack of diversity in weed management, unwillingness of many weed researchers to conduct real integrated weed management research or growers to accept recommendations, influence or role of agrichemical marketing and governmental policy and lack of multidisciplinary research. We then look ahead to new technologies that are needed for future weed control in general and RWM in particular, in areas such as non-chemical and chemical weed management, novel herbicides, site-specific weed management, drones for monitoring large areas, wider application of 'omics' and simulation model development. Finally, we discuss implementation strategies for integrated weed management to achieve RWM, development of RWM for developing countries, a new classification of herbicides based on mode of metabolism to facilitate greater stewardship and greater global exchange of information to focus efforts on areas that maximize progress in weed control and RWM. There is little doubt that new or emerging technologies will provide novel tools for RMW in the future, but will they arrive in time?


Subject(s)
Herbicide Resistance , Herbicides/pharmacology , Plant Weeds/drug effects , Weed Control/methods , Weed Control/trends , Crops, Agricultural
7.
J Exp Bot ; 64(5): 1381-92, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23364940

ABSTRACT

In a non-model staple crop like wheat (Triticum aestivumI L.), functional validation of potential drought stress responsive genes identified in Arabidopsis could provide gene targets for breeding. Virus-induced gene silencing (VIGS) of genes of interest can overcome the inherent problems of polyploidy and limited transformation potential that hamper functional validation studies in wheat. In this study, three potential candidate genes shown to be involved in abiotic stress response pathways in Arabidopsis thaliana were selected for VIGS experiments in wheat. These include Era1 (enhanced response to abscisic acid), Cyp707a (ABA 8'-hydroxylase), and Sal1 (inositol polyphosphate 1-phosphatase). Gene homologues for these three genes were identified in wheat and cloned in the viral vector barley stripe mosaic virus (BSMV) in the antisense direction, followed by rub inoculation of BSMV viral RNA transcripts onto wheat plants. Quantitative real-time PCR showed that VIGS-treated wheat plants had significant reductions in target gene transcripts. When VIGS-treated plants generated for Era1 and Sal1 were subjected to limiting water conditions, they showed increased relative water content, improved water use efficiency, reduced gas exchange, and better vigour compared to water-stressed control plants inoculated with RNA from the empty viral vector (BSMV0). In comparison, the Cyp707a-silenced plants showed no improvement over BSMV0-inoculated plants under limited water condition. These results indicate that Era1 and Sal1 play important roles in conferring drought tolerance in wheat. Other traits affected by Era1 silencing were also studied. Delayed seed germination in Era1-silenced plants suggests this gene may be a useful target for developing resistance to pre-harvest sprouting.


Subject(s)
Adaptation, Physiological/genetics , Arabidopsis/genetics , Droughts , Gene Silencing , Mosaic Viruses/physiology , Triticum/genetics , Triticum/virology , Dehydration , Gases/metabolism , Gene Expression Regulation, Plant , Genes, Plant/genetics , Germination , Phenotype , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Stomata/physiology , Plants, Genetically Modified , RNA, Messenger/genetics , RNA, Messenger/metabolism , Real-Time Polymerase Chain Reaction , Seeds/genetics , Seeds/growth & development , Sequence Homology, Nucleic Acid , Triticum/microbiology , Triticum/physiology
8.
Evol Appl ; 6(8): 1218-21, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24478803

ABSTRACT

Synthetic herbicides have been used globally to control weeds in major field crops. This has imposed a strong selection for any trait that enables plant populations to survive and reproduce in the presence of the herbicide. Herbicide resistance in weeds must be minimized because it is a major limiting factor to food security in global agriculture. This represents a huge challenge that will require great research efforts to develop control strategies as alternatives to the dominant and almost exclusive practice of weed control by herbicides. Weed scientists, plant ecologists and evolutionary biologists should join forces and work towards an improved and more integrated understanding of resistance across all scales. This approach will likely facilitate the design of innovative solutions to the global herbicide resistance challenge.

9.
Curr Microbiol ; 64(5): 405-11, 2012 May.
Article in English | MEDLINE | ID: mdl-22302451

ABSTRACT

Hexazinone, a triazine herbicide that is often detected as a ground and surface water contaminant, inhibits electron transport in photosynthetic organisms and is toxic to primary producers that serve as the base of the food chain. This laboratory study evaluated the ability of two types of microbial reactors, i.e., a vegetable oil-based nitrogen-limiting biobarrier and an aerobic slow sand filter, as methods for removing hexazinone from simulated groundwater. The N-limiting biobarriers degraded hexazinone, but did so with a 52 week incubation period and a removal efficiency that varied greatly among replicates, with one biobarrier showing a removal efficiency of ~95% and the other an efficiency of ~50%. More consistent degradation was obtained with the aerobic sand biobarriers. Four aerobic biobarriers were evaluated and all behaved in a similar manner degrading hexazinone with removal efficiencies of ~97%; challenging two of the aerobic biobarriers with large amounts of influent hexazinone showed that these barriers are capable of efficiently remediating large amounts (>100 mg L(-1)) of hexazinone at high efficiency. The remediation process was due to biological degradation rather than abiotic processes. The long lag phase observed in both types of reactors suggests that an acclimation process, where microorganisms capable of degrading hexazinone increased in numbers, was required. Also, the isolation of bacteria that show a positive growth response to the presence of hexazinone in their growth media suggests biological degradation.


Subject(s)
Bacteria/metabolism , Bioreactors/microbiology , Groundwater/microbiology , Herbicides/metabolism , Triazines/metabolism , Water Pollutants, Chemical/metabolism , Water Purification/methods , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Biodegradation, Environmental , Groundwater/chemistry
10.
J Environ Qual ; 41(1): 170-8, 2012.
Article in English | MEDLINE | ID: mdl-22218185

ABSTRACT

Mesotrione is a carotenoid biosynthesis-inhibiting herbicide labeled for pre-emergence and postemergence weed control in corn production. Understanding the factors that influence the dissipation of mesotrione in soil and in the plant-available water (PAW) is important for the environmental fate assessment and optimal weed management practices. The present research investigated the role of soil properties and microbial activities on the interrelated sorption and degradation processes of mesotrione in four soils by direct measurements of PAW. We found that mesotrione bound to the soils time dependently, with approximately 14 d to reach equilibrium. The 24-h batch-slurry equilibrium experiments provided the sorption partition coefficient ranging from 0.26 to 3.53 L kg(-1), depending on soil organic carbon and pH. The dissipation of mesotrione in the soil-bound phase was primarily attributed to desorption to the PAW. Degradation in the PAW was rapid and primarily dependent on microbial actions, with half-degradation time (DT(50)) <3 d in all four soils tested. The rapid degradation in the PAW became rate limited by sorption as more available molecules were depleted in the soil pore water, resulting in a more slowed overall process for the total soil-water system (DT(50) <26 d). The dissipation of mesotrione in the PAW was due to microbial metabolism and time-dependent sorption to the soils. A coupled kinetics model calibrated with the data from the laboratory centrifugation technique provided an effective approach to investigate the interrelated processes of sorption and degradation in realistic soil moisture conditions.


Subject(s)
Bacteria/metabolism , Cyclohexanones/chemistry , Cyclohexanones/metabolism , Plants/metabolism , Soil/chemistry , Water/metabolism , Time Factors , Waste Disposal, Fluid , Water/chemistry , Water Pollutants, Chemical/chemistry
11.
Pest Manag Sci ; 68(1): 3-9, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21842528

ABSTRACT

The intensive use of glyphosate alone to manage weeds has selected populations that are glyphosate resistant. The three mechanisms of glyphosate resistance that have been elucidated are (1) target-site mutations, (2) gene amplification and (3) altered translocation due to sequestration. What have we learned from the selection of these mechanisms, and how can we apply those lessons to future herbicide-resistant crops and new mechanisms of action? First, the diversity of glyphosate resistance mechanisms has helped further our understanding of the mechanism of action of glyphosate and advanced our knowledge of plant physiology. Second, the relatively rapid evolution of glyphosate-resistant weed populations provides further evidence that no herbicide is invulnerable to resistance. Third, as new herbicide-resistant crops are developed and new mechanisms of action are discovered, the weed science community needs to ensure that we apply the lessons we have learned on resistance management from the experience with glyphosate. Every new weed management system must be evaluated during development for its potential to select for resistance, and stewardship programs should be in place when the new program is introduced.


Subject(s)
Crops, Agricultural/drug effects , Glycine/analogs & derivatives , Herbicide Resistance , Plant Weeds/drug effects , Crops, Agricultural/genetics , Crops, Agricultural/metabolism , Glycine/pharmacology , Plant Weeds/genetics , Plant Weeds/metabolism , Weed Control , Glyphosate
12.
Environ Toxicol Chem ; 30(9): 1973-81, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21688305

ABSTRACT

In the present study a branched serial first-order decay (BSFOD) model is presented and used to derive transformation rates describing the decay of a common herbicide, atrazine, and its metabolites observed in unsaturated soils adapted to previous atrazine applications and in soils with no history of atrazine applications. Calibration of BSFOD models for soils throughout the country can reduce the uncertainty, relative to that of traditional models, in predicting the fate and transport of pesticides and their metabolites and thus support improved agricultural management schemes for reducing threats to the environment. Results from application of the BSFOD model to better understand the degradation of atrazine supports two previously reported conclusions: atrazine (6-chloro-N-ethyl-N'-(1-methylethyl)-1,3,5-triazine-2,4-diamine) and its primary metabolites are less persistent in adapted soils than in nonadapted soils; and hydroxyatrazine was the dominant primary metabolite in most of the soils tested. In addition, a method to simulate BSFOD in a one-dimensional solute-transport unsaturated zone model is also presented.


Subject(s)
Atrazine/analysis , Herbicides/analysis , Soil Pollutants/analysis , Soil/chemistry , Agriculture , Atrazine/chemistry , Atrazine/metabolism , Chemical Phenomena , Environmental Monitoring , Herbicides/chemistry , Herbicides/metabolism , Kinetics , Soil Microbiology , Soil Pollutants/chemistry , Soil Pollutants/metabolism
13.
J Environ Qual ; 40(1): 46-56, 2011.
Article in English | MEDLINE | ID: mdl-21488492

ABSTRACT

Reports of enhanced atrazine degradation and reduced residual weed control have increased in recent years, sparking interest in identifying factors contributing to enhanced atrazine degradation. The objectives of this study were to (i) assess the spatial distribution of enhanced atrazine degradation in 45 commercial farm fields in northeastern Colorado (Kit Carson, Larimer, Logan, Morgan, Phillips, and Yuma counties) where selected cultural management practices and soil bio-chemo-physical properties were quantified; (ii) utilize Classification and Regression Tree (CART) Analysis to identify cultural management practices and (or) soil bio-chemophysical attributes that are associated with enhanced atrazine degradation; and (iii) translate our CART Analysis into a model that predicts relative atrazine degradation rate (rapid, moderate, or slow) as a function of known management practices and (or) soil properties. Enhanced atrazine degradation was widespread within a 300-km radius across northeastern Colorado, with approximately 44% of the fields demonstrating rapid atrazine degradation activity (laboratory-based dissipation time halflife [DT50] < 3 d). The most rapid degradation rates occurred in fields that received the most frequent atrazine applications. Classification and Regression Tree Analysis resulted in a prediction model that correctly classified soils with rapid atrazine DT50 80% of the time and soils with slow degradation (DT50 > 8 d) 62.5% of the time. Significant factors were recent atrazine use history, soil pH, and organic matter content. The presence/absence of atzC polymerase chain reaction (PCR) product was not a significant predictor variable for atrazine DT50. In conclusion, enhanced atrazine degradation is widespread in northeastern Colorado. If producers know their atrazine use history, soil pH, and OM content, they should be able to identify fields exhibiting enhanced atrazine degradation using our CART Model.


Subject(s)
Atrazine/chemistry , Biodegradation, Environmental , Crops, Agricultural , Environmental Pollutants/chemistry , Herbicides/chemistry , Agriculture/methods , Amidohydrolases/genetics , Amidohydrolases/metabolism , Atrazine/pharmacology , Bacteria/genetics , Bacteria/metabolism , Colorado , Environmental Monitoring , Herbicides/pharmacology , Plant Weeds/drug effects , Soil Microbiology , Time Factors
14.
Curr Microbiol ; 62(5): 1560-4, 2011 May.
Article in English | MEDLINE | ID: mdl-21327887

ABSTRACT

Sulfachloropyridazine (SCP), an antibiotic used in aquaculture and in animal husbandry, is a common contaminant in surface and groundwaters. Two types of microbial reactors were evaluated as methods for removing SCP from flowing water. One type of reactor evaluated was a nitrogen-limiting biobarrier; the other a slow-sand-filter. Results showed that the soybean oil-fed, nitrogen-limiting biobarrier was not very effective at removing SCP from flowing water. When supplied with flowing water containing 2.4 mg l(-1) SCP the nitrogen-limiting biobarrier removed ~0.6 mg l(-1) SCP or about 28% of that present. SCP removal by the nitrogen-limiting biobarrier may not have been biological as abiotic removal was not ruled out. More efficient biological removal was obtained with the slow-sand-filter which reduced the SCP levels from 2.35 to 0.048 mg l(-1), a removal efficiency of ~98%. High levels of nitrate nitrogen, 50 mg l(-1) N, did not interfere with the removal processes of either reactor suggesting that SCP was not being degraded as a microbial nitrogen source.


Subject(s)
Bacteria/metabolism , Bioreactors/microbiology , Sulfachlorpyridazine/metabolism , Water Pollutants, Chemical/metabolism , Water Purification/methods , Biodegradation, Environmental , Water Purification/instrumentation
15.
J Agric Food Chem ; 59(11): 5886-9, 2011 Jun 08.
Article in English | MEDLINE | ID: mdl-21329355

ABSTRACT

Evolved glyphosate resistance in weedy species represents a challenge for the continued success and utility of glyphosate-resistant crops. Glyphosate functions by inhibiting the plant enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS). The resistance mechanism was determined in a population of glyphosate-resistant Palmer amaranth from Georgia (U.S.). Within this population, glyphosate resistance correlates with increases in (a) genomic copy number of EPSPS, (b) expression of the EPSPS transcript, (c) EPSPS protein level, and (d) EPSPS enzymatic activity. Dose response results from the resistant and an F(2) population suggest that between 30 and 50 EPSPS genomic copies are necessary to survive glyphosate rates between 0.5 and 1.0 kg ha(-1). These results further confirm the role of EPSPS gene amplification in conferring glyphosate resistance in this population of Palmer amaranth. Questions remain related to how the EPSPS amplification initially occurred and the occurrence of this mechanism in other Palmer amaranth populations and other glyphosate-resistant species.


Subject(s)
3-Phosphoshikimate 1-Carboxyvinyltransferase/genetics , Amaranthus/drug effects , Amaranthus/enzymology , Glycine/analogs & derivatives , Herbicide Resistance , Herbicides/pharmacology , Plant Proteins/genetics , Plant Weeds/drug effects , 3-Phosphoshikimate 1-Carboxyvinyltransferase/antagonists & inhibitors , 3-Phosphoshikimate 1-Carboxyvinyltransferase/metabolism , Amaranthus/genetics , Enzyme Inhibitors/pharmacology , Gene Dosage , Gene Expression Regulation, Plant/drug effects , Glycine/pharmacology , Plant Proteins/antagonists & inhibitors , Plant Proteins/metabolism , Glyphosate
16.
J Environ Qual ; 39(4): 1369-77, 2010.
Article in English | MEDLINE | ID: mdl-20830925

ABSTRACT

The aim of this report is to inform modelers of the differences in atrazine fate between s-triazine-adapted and nonadapted soils as a function of depth in the profile and to recommend atrazine and metabolite input values for pesticide process submodules. The objectives of this study were to estimate the atrazine-mineralizing bacterial population, cumulative atrazine mineralization, atrazine persistence, and metabolite (desethylatrazine [DEA], deisopropylatrazine [DIA], and hydroxyatrazine [HA]) formation and degradation in Colorado and Mississippi s-triazine-adapted and nonadapted soils at three depths (0-5, 5-15, and 15-30 cm). Regardless of depth, the AMBP and cumulative atrazine mineralization was at least 3.8-fold higher in s-triazine-adapted than nonadapted soils. Atrazine half-life (T1/2) values pooled over nonadapted soils and depths approximated historic estimates (T1/2 = 60 d). Atrazine persistence in all depths of s-triazine-adapted soils was at least fourfold lower than that of the nonadapted soil. Atrazine metabolite concentrations were lower in s-triazine-adapted than in nonadapted soil by 35 d after incubation regardless of depth. Results indicate that (i) reasonable fate and transport modeling of atrazine will require identifying if soils are adapted to s-triazine herbicides. For example, our data confirm the 60-d T1/2 for atrazine in nonadapted soils, but a default input value of 6 d for atrazine is required for s-triazine adapted soils. (ii) Literature estimates for DEA, DIA, and HA T1/2 values in nonadapted soils are 52, 36, and 60 d, respectively, whereas our analysis indicates that reasonable T1/2 values for s-triazine-adapted soils are 10 d for DEA, 8 d for DIA, and 6 d for HA. (iii) An estimate for the relative distribution of DIA, DEA, and HA produced in nonadapted soils is 18, 72, and 10% of parent, respectively. In s-triazine-adapted soils, the values were 6, 23, and 71% for DIA, DEA, and HA, respectively. The effects of soil adaptation on metabolite distribution need to be confirmed in field experiments.


Subject(s)
Atrazine/chemistry , Herbicides/chemistry , Soil Pollutants/chemistry , Soil/analysis , Agriculture , Atrazine/metabolism , Colorado , Herbicides/metabolism , Mississippi , Soil Pollutants/metabolism , Time Factors
17.
Pest Manag Sci ; 66(5): 461-81, 2010 May.
Article in English | MEDLINE | ID: mdl-20127867

ABSTRACT

Novel catabolic pathways enabling rapid detoxification of s-triazine herbicides have been elucidated and detected at a growing number of locations. The genes responsible for s-triazine mineralization, i.e. atzABCDEF and trzNDF, occur in at least four bacterial phyla and are implicated in the development of enhanced degradation in agricultural soils from all continents except Antarctica. Enhanced degradation occurs in at least nine crops and six crop rotation systems that rely on s-triazine herbicides for weed control, and, with the exception of acidic soil conditions and s-triazine application frequency, adaptation of the microbial population is independent of soil physiochemical properties and cultural management practices. From an agronomic perspective, residual weed control could be reduced tenfold in s-triazine-adapted relative to non-adapted soils. From an environmental standpoint, the off-site loss of total s-triazine residues could be overestimated 13-fold in adapted soils if altered persistence estimates and metabolic pathways are not reflected in fate and transport models. Empirical models requiring soil pH and s-triazine use history as input parameters predict atrazine persistence more accurately than historical estimates, thereby allowing practitioners to adjust weed control strategies and model input values when warranted.


Subject(s)
Agriculture , Environment , Triazines/isolation & purification , Triazines/metabolism , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Biodegradation, Environmental , Triazines/toxicity
18.
Curr Microbiol ; 60(1): 42-6, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19756863

ABSTRACT

Due to its high usage, mobility, and recalcitrant nature, atrazine is a common groundwater contaminant. Moreover, groundwaters that are contaminated with atrazine often contain nitrate as well. Nitrate interferes with the biological degradation of atrazine and makes it more difficult to use in situ biological methods to remediate atrazine contaminated groundwater. To solve this problem we used two reactors in sequence as models of in situ biobarriers; the first was a vegetable-oil-based denitrifying biobarrier and the second an aerobic reactor that oxygenated the denitrifying reactor's effluent. The reactors were inoculated with an atrazine-degrading microbial consortium and supplied with water containing 5 mg l(-1) nitrate-N and 3 mg l(-1) atrazine. Our hypothesis was that the denitrifying barrier would remove nitrate from the flowing water and that the downstream reaction would remove atrazine. Our hypothesis proved correct; the two reactor system removed 99.9% of the atrazine during the final 30 weeks of the study. The denitrifying barrier removed approximately 98% of the nitrate and approximately 30% of the atrazine while the aerobic reactor removed approximately 70% of the initial atrazine. The system continued to work when the amount of nitrate-N in the influent water was increased to 50 mg l(-1). A mercury poisoning study blocked the degradation of atrazine indicating that biological processes were involved. An in situ denitrifying barrier coupled with an air injection system or other oxygenation process might be used to remove both nitrate and atrazine from contaminated groundwater or to protect groundwater from an atrazine spill.


Subject(s)
Bioreactors/microbiology , Environmental Restoration and Remediation , Water Pollutants, Chemical , Water Purification/methods , Atrazine , Herbicides , Nitrates
19.
Proc Natl Acad Sci U S A ; 107(3): 1029-34, 2010 Jan 19.
Article in English | MEDLINE | ID: mdl-20018685

ABSTRACT

The herbicide glyphosate became widely used in the United States and other parts of the world after the commercialization of glyphosate-resistant crops. These crops have constitutive overexpression of a glyphosate-insensitive form of the herbicide target site gene, 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS). Increased use of glyphosate over multiple years imposes selective genetic pressure on weed populations. We investigated recently discovered glyphosate-resistant Amaranthus palmeri populations from Georgia, in comparison with normally sensitive populations. EPSPS enzyme activity from resistant and susceptible plants was equally inhibited by glyphosate, which led us to use quantitative PCR to measure relative copy numbers of the EPSPS gene. Genomes of resistant plants contained from 5-fold to more than 160-fold more copies of the EPSPS gene than did genomes of susceptible plants. Quantitative RT-PCR on cDNA revealed that EPSPS expression was positively correlated with genomic EPSPS relative copy number. Immunoblot analyses showed that increased EPSPS protein level also correlated with EPSPS genomic copy number. EPSPS gene amplification was heritable, correlated with resistance in pseudo-F(2) populations, and is proposed to be the molecular basis of glyphosate resistance. FISH revealed that EPSPS genes were present on every chromosome and, therefore, gene amplification was likely not caused by unequal chromosome crossing over. This occurrence of gene amplification as an herbicide resistance mechanism in a naturally occurring weed population is particularly significant because it could threaten the sustainable use of glyphosate-resistant crop technology.


Subject(s)
Amaranthus/genetics , Gene Amplification , Glycine/analogs & derivatives , Herbicides , 3-Phosphoshikimate 1-Carboxyvinyltransferase/genetics , Amaranthus/enzymology , DNA, Complementary , Gene Dosage , Molecular Sequence Data , Shikimic Acid/metabolism , Glyphosate
20.
J Environ Qual ; 38(5): 1861-9, 2009.
Article in English | MEDLINE | ID: mdl-19643751

ABSTRACT

Glyphosate-resistant (GR) corn may be a major component of new cropping systems to optimize the use of limited irrigation water supply while sustaining production. Because atrazine is an important tool for residual weed control in GR corn, we examined atrazine binding to soil, dissipation, movement, and early season weed control in limited and full irrigation cropping systems. These systems included continuous corn under conventional tillage and full irrigation (CCC-FI) and under no-tillage and deficit irrigation (CCC-DI), a sunflower-wheat-corn rotation under no-tillage and deficit irrigation (SWC-DI), and a wheat-fallow-wheat-corn rotation under no tillage and natural precipitation (WFWC-NP). Crop rotation and herbicide use history influenced atrazine behavior more than amount or type of irrigation. Atrazine dissipated more rapidly in the top 30 cm of soil in the CCC-FI and CCC-DI plots (half-life [T(1/2)] = 3-12 d), which had received previous applications of the herbicide, compared with the SWC-DI and WFWC-NP plots, which had no history of atrazine use (T(1/2) = 15-22 d). Laboratory assays indicated that the different rates of degradation were at least partly due to differences in microbial degradation in the soil. Atrazine moved the most in the top 30 cm in the SWC-DI and WFWC-NP plots. This greater movement is probably due to the slower rate of atrazine degradation. Studies of the behavior of pre-emergence herbicides in new limited irrigation cropping systems must consider all characteristics of the systems, not just amount and timing of irrigation.


Subject(s)
Atrazine/analysis , Herbicides/analysis , Soil Pollutants/analysis , Water , Atrazine/chemistry , Colorado , Herbicides/chemistry , Poaceae/growth & development , Population Density , Population Dynamics , Soil Pollutants/chemistry , Water Movements
SELECTION OF CITATIONS
SEARCH DETAIL
...