Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Math Biosci Eng ; 20(8): 14502-14517, 2023 Jul 04.
Article in English | MEDLINE | ID: mdl-37679146

ABSTRACT

Cloud computing has become a widespread technology that delivers a broad range of services across various industries globally. One of the crucial features of cloud infrastructure is virtual machine (VM) migration, which plays a pivotal role in resource allocation flexibility and reducing energy consumption, but it also provides convenience for the fast propagation of malware. To tackle the challenge of curtailing the proliferation of malware in the cloud, this paper proposes an effective strategy based on optimal dynamic immunization using a controlled dynamical model. The objective of the research is to identify the most efficient way of dynamically immunizing the cloud to minimize the spread of malware. To achieve this, we define the control strategy and loss and give the corresponding optimal control problem. The optimal control analysis of the controlled dynamical model is examined theoretically and experimentally. Finally, the theoretical and experimental results both demonstrate that the optimal strategy can minimize the incidence of infections at a reasonable loss.

2.
Sensors (Basel) ; 17(12)2017 Dec 08.
Article in English | MEDLINE | ID: mdl-29292792

ABSTRACT

Vehicle sensor networks (VSNs) are ushering in a promising future by enabling more intelligent transportation systems and providing a more efficient driving experience. However, because of their inherent openness, VSNs are subject to a large number of potential security threats. Although various authentication schemes have been proposed for addressing security problems, they are not suitable for VSN applications because of their high computation and communication costs. Chuang and Lee have developed a trust-extended authentication mechanism (TEAM) for vehicle-to-vehicle communication using a transitive trust relationship, which they claim can resist various attacks. However, it fails to counter internal attacks because of the utilization of a shared secret key. In this paper, to eliminate the vulnerability of TEAM, an enhanced privacy-preserving authentication scheme for VSNs is constructed. The security of our proposed scheme is proven under the random oracle model based on the assumption of the computational Diffie-Hellman problem.

3.
Sensors (Basel) ; 16(11)2016 Nov 18.
Article in English | MEDLINE | ID: mdl-27869704

ABSTRACT

With the integrated development of the Internet, wireless sensor technology, cloud computing, and mobile Internet, there has been a lot of attention given to research about and applications of the Internet of Things. A Wireless Sensor Network (WSN) is one of the important information technologies in the Internet of Things; it integrates multi-technology to detect and gather information in a network environment by mutual cooperation, using a variety of methods to process and analyze data, implement awareness, and perform tests. This paper mainly researches the localization algorithm of sensor nodes in a wireless sensor network. Firstly, a multi-granularity region partition is proposed to divide the location region. In the range-based method, the RSSI (Received Signal Strength indicator, RSSI) is used to estimate distance. The optimal RSSI value is computed by the Gaussian fitting method. Furthermore, a Voronoi diagram is characterized by the use of dividing region. Rach anchor node is regarded as the center of each region; the whole position region is divided into several regions and the sub-region of neighboring nodes is combined into triangles while the unknown node is locked in the ultimate area. Secondly, the multi-granularity regional division and Lagrange multiplier method are used to calculate the final coordinates. Because nodes are influenced by many factors in the practical application, two kinds of positioning methods are designed. When the unknown node is inside positioning unit, we use the method of vector similarity. Moreover, we use the centroid algorithm to calculate the ultimate coordinates of unknown node. When the unknown node is outside positioning unit, we establish a Lagrange equation containing the constraint condition to calculate the first coordinates. Furthermore, we use the Taylor expansion formula to correct the coordinates of the unknown node. In addition, this localization method has been validated by establishing the real environment.

4.
Sci Rep ; 6: 30001, 2016 07 18.
Article in English | MEDLINE | ID: mdl-27427496

ABSTRACT

Electroanalysis was performed using a boron-doped diamond (BDD) electrode for the simultaneous detection of 2-heptyl-3-hydroxy-4-quinolone (PQS), 2-heptyl-4-hydroxyquinoline (HHQ) and pyocyanin (PYO). PQS and its precursor HHQ are two important signal molecules produced by Pseudomonas aeruginosa, while PYO is a redox active toxin involved in virulence and pathogenesis. This Gram-negative and opportunistic human pathogen is associated with a hospital-acquired infection particularly in patients with compromised immunity and is the primary cause of morbidity and mortality in cystic fibrosis (CF) patients. Early detection is crucial in the clinical management of this pathogen, with established infections entering a biofilm lifestyle that is refractory to conventional antibiotic therapies. Herein, a detection procedure was optimized and proven for the simultaneous detection of PYO, HHQ and PQS in standard mixtures, biological samples, and P. aeruginosa spiked CF sputum samples with remarkable sensitivity, down to nanomolar levels. Differential pulse voltammetry (DPV) scans were also applicable for monitoring the production of PYO, HHQ and PQS in P. aeruginosa PA14 over 8 h of cultivation. The simultaneous detection of these three compounds represents a molecular signature specific to this pathogen.

5.
Anal Bioanal Chem ; 408(23): 6361-7, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27473426

ABSTRACT

Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen, capable of surviving in a broad range of natural environments and quickly acquiring resistance. It is associated with hospital-acquired infections, particularly in patients with compromised immunity, and is the primary cause of morbidity and mortality in cystic fibrosis (CF) patients. P. aeruginosa is also of nosocomial importance on dairy farms and veterinary hospitals, where it is a key morbidity factor in bovine mastitis. P. aeruginosa uses a cell-cell communication system consisting of signalling molecules to coordinate bacterial secondary metabolites, biofilm formation, and virulence. Simple and sensitive methods for the detection of biomolecules as indicators of P. aeruginosa infection would be of great clinical importance. Here, we report the synthesis of the P. aeruginosa natural product, barakacin, which was recently isolated from the bovine ruminal strain ZIO. A simple and sensitive electrochemical method was used for barakacin detection using a boron-doped diamond (BDD) and glassy carbon (GC) electrodes, based on cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The influence of electrolyte pH on the peak potential and peak currents was also investigated. At pH 2.0, the peak current was linearly dependent on barakacin concentration (in the range used, 1-10 µM), with correlation coefficients greater than 0.98 on both electrodes. The detection limit (S/N = 3) on the BDD electrode was 100-fold lower than that obtained on the GC electrode. The optimized method using the BDD electrode was extended to bovine (cow feces) and human (sputum of a CF patient) samples. Spiked barakacin was easily detected in these matrices at a limit of 0.5 and 0.05 µM, respectively. Graphical abstract Electrochemical detection of barakacin.


Subject(s)
Electrochemical Techniques/methods , Indoles/analysis , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/isolation & purification , Animals , Boron/chemistry , Carbon/chemistry , Cattle , Cystic Fibrosis/microbiology , Diamond/chemistry , Electrochemical Techniques/instrumentation , Electrodes , Feces/microbiology , Humans , Indoles/chemical synthesis , Pseudomonas Infections/diagnosis , Pseudomonas aeruginosa/chemistry , Thiazoles/analysis , Thiazoles/chemical synthesis
6.
Bioorg Med Chem Lett ; 24(19): 4703-4707, 2014 Oct 01.
Article in English | MEDLINE | ID: mdl-25190465

ABSTRACT

Pseudomonas aeruginosa uses a hierarchical cell-cell communication system consisting of a number of regulatory elements to coordinate the expression of bacterial virulence genes. Sensitive detection of quorum sensing (QS) molecules has the potential for early identification of P. aeruginosa facilitating early medical intervention. A recently isolated cell-cell communication molecule, a thiazole termed IQS, can bypass the las QS system of P. aeruginosa under times of stress, activating a subset of QS-controlled genes. This compound offers a new target for pathogen detection and has been prepared in a one step protocol. A simple electrochemical strategy was employed for its sensitive detection using boron-doped diamond and glassy carbon electrodes by cyclic voltammetry and amperometry.


Subject(s)
Cell Communication/genetics , Electrochemical Techniques , Pseudomonas aeruginosa/genetics , Quorum Sensing/genetics , Signal Transduction/genetics , Thiazoles/chemistry , Carbon/chemistry , Electrodes , Molecular Structure , Pseudomonas aeruginosa/cytology , Pseudomonas aeruginosa/metabolism
7.
Electrophoresis ; 33(1): 105-16, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22124936

ABSTRACT

This review aims to highlight the current role of microchip CE (MCE) in clinical analysis to date, and also its future potential in this important area. One of the most notable advancements in separation science, which has accelerated in the last decade, has been the use of plastic and glass microchips to achieve high-speed electrophoresis separations in seconds, requiring only pico or nanolitre sample volumes. So far, in the clinical laboratory, MCE has lent itself to the resolution of very complex challenging analytes such as DNA, RNA, protein analysis, cellular components and other disease biomarkers. At present, most basic clinical laboratories rely heavily upon various kinds of enzymatic immunoassays as these methods offer speed, specificity, reliability and are well established analytical methods. However, this is not always the case, as with all analytical methods there are limitations, and sometimes enzymatic-based assays can be challenged by low-level concentration of target analytes present in samples resulting in high RSD values and results that cannot be interpreted. In some cases, this difficulty can be exasperated when complex sample matrices are presented for analysis, and interfering components result in highly exaggerated results from unwanted extra enzymatic binding. MCE may have a role in providing alternative highly sophisticated automated clinical analysis using state-of-the-art methodologies.


Subject(s)
Clinical Laboratory Techniques/instrumentation , Clinical Laboratory Techniques/methods , Electrophoresis, Microchip , Miniaturization/instrumentation , Equipment Design , Humans , Immunoassay , Mass Spectrometry , Proteomics/instrumentation , Proteomics/methods
8.
J Chromatogr A ; 1217(32): 5288-97, 2010 Aug 06.
Article in English | MEDLINE | ID: mdl-20598698

ABSTRACT

Six selected primary carbamate insecticides, methomyl, carbaryl, carbofuran, propoxur, isoprocarb, and promecarb, were hydrolyzed in alkaline solution, resulting in electroactive derivatives detectable at a platinum (Pt) electrode poised at +0.8 V vs Ag/AgCl (3 M NaCl). The Pt electrode was inserted into a small electrochemical cell and positioned close to the capillary outlet as an end-column detector to detect the carbamate derivatives after electrophoretic separation. Based on their predicted pK(a) values and aqueous solubilities, micellar electrokinetic chromatography (MEKC) was optimized for baseline separation of the derivatives using 20 mM borate, pH 10.2 containing 20 mM sodium dodecyl sulfate as a running buffer. When combined with solid-phase extraction (SPE) on octadecyl silica, a preconcentration factor of 100-fold achieved detection to 0.5 microM methomyl and to 0.01 microM for the remaining five pesticides, significantly below the level regulated by government agencies of most countries. The SPE-MEKC method when applied to the separation and analysis of spiked river water and soil samples, yielded results with excellent reproducibility, recovery and selectivity.


Subject(s)
Carbamates/analysis , Chromatography, Micellar Electrokinetic Capillary/methods , Insecticides/analysis , Solid Phase Extraction/methods , Borates/chemistry , Carbamates/chemistry , Electrodes , Electrophoresis, Capillary , Environmental Pollutants/analysis , Environmental Pollutants/chemistry , Hydrogen-Ion Concentration , Insecticides/chemistry , Linear Models , Platinum/chemistry , Reproducibility of Results , Rivers/chemistry , Sensitivity and Specificity , Sodium Dodecyl Sulfate/chemistry , Soil Pollutants/analysis , Soil Pollutants/chemistry , Solubility , Spectrophotometry, Ultraviolet
9.
Biosens Bioelectron ; 25(6): 1313-8, 2010 Feb 15.
Article in English | MEDLINE | ID: mdl-19914056

ABSTRACT

Vertically aligned nanowire array electrodes (NAEs) were prepared by electrodeposition of gold into an anodic aluminium oxide membrane (AAM), providing an ordered three-dimensional (3D) matrix for immobilization of redox proteins. Third-generation H(2)O(2) biosensors were prepared by covalent immobilization of horseradish peroxidase (HRP) on the self-assembled monolayer modified NAEs. Direct electron transfer and electrocatalytic performances of the HRP/NAEs with different nanowire lengths (deposition time of 2, 4 and 5h) were investigated. Results showed that with longer nanowires, better performances were achieved. The HRP/NAE(5h) (5h deposition time) exhibited remarkable sensitivity (45.86 microA mM(-1) cm(-2)) towards H(2)O(2) with a detection limit of 0.42 microM (S/N=3), linearity up to 15 mM and a response time of 4s. The ordered 3D gold nanowire array with high conductivity, excellent electron transfer capability and good biocompatibility proved promising for fabricating sensitive, selective, stable and mediator-free enzymatic biosensors.


Subject(s)
Biosensing Techniques/instrumentation , Electrochemistry/instrumentation , Horseradish Peroxidase/chemistry , Hydrogen Peroxide/analysis , Microelectrodes , Nanotechnology/instrumentation , Nanotubes/chemistry , Enzymes, Immobilized/chemistry , Equipment Design , Equipment Failure Analysis , Hydrogen Peroxide/chemistry , Nanotubes/ultrastructure , Reproducibility of Results , Sensitivity and Specificity
10.
Anal Chem ; 81(10): 4089-98, 2009 May 15.
Article in English | MEDLINE | ID: mdl-19382752

ABSTRACT

N-acetyltyramine was synthesized and electropolymerized together with a negatively charged sulfobutylether-beta-cyclodextrin on a boron-doped diamond (BDD) electrode followed by the electropolymerization of pyrrole to form a stable and permselective film for selective dopamine detection. The selectivity and sensitivity of the formed layer-by-layer film was governed by the sequence of deposition and the applied potential. Raman results showed a decrease in the peak intensity at 1329 cm(-1) (sp(3)), the main feature of BDD, upon each electrodeposition step. Such a decrease was correlated well with the change of the charge-transfer resistance derived from impedance data, i.e., reflecting the formation of the layer-by-layer film. The polycrystalline BDD surface became more even with lower surface roughness as revealed by scanning electron and atomic force microscopy. The modified BDD electrode exhibited rapid response to dopamine within 1.5-2 s and a low detection limit of 4-5 nM with excellent reproducibility. Electroactive interferences caused by 4-dihydroxyphenylalanine, 3,4-dihydroxyphenylacetic acid, ascorbic acid, and uric acid were completely eliminated, whereas the signal response of epinephrine and norepinephrine was significantly suppressed by the permselective film.


Subject(s)
Biosensing Techniques/instrumentation , Boron/chemistry , Diamond/chemistry , Dopamine/analysis , Polymers/chemistry , Pyrroles/chemistry , Tyramine/analogs & derivatives , beta-Cyclodextrins/chemistry , Biosensing Techniques/methods , Electrodes , False Positive Reactions , Membranes, Artificial , Reproducibility of Results , Tyramine/chemistry
11.
Analyst ; 134(3): 519-27, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19238289

ABSTRACT

An effective and robust electrochemical approach has been developed for selective detection of dopamine in the presence of 3,4-dihydroxyphenylalanine (l-DOPA), ascorbic acid, uric acid and other dopamine metabolites. A 'layer-by-layer' film of tyramine and pyrrole-1-propionic acid (PPA) was formed by subsequent electropolymerization on a boron-doped diamond (BDD) electrode with an overall thickness of approximately 33 nm as estimated by AFM. The formation of the electropolymerized homogeneous film was also confirmed by SEM and Raman spectroscopy. The modified BDD electrode exhibited rapid response to dopamine within 6 s and a detection limit of 50 nM with excellent reproducibility. The stable electropolymerized film was capable of excluding electroactive interference from 20 microM l-DOPA, 20 microM 3,4-dihydroxyphenylacetic acid (DOPAC), and ascorbic and uric acids at normal physiological conditions (100 microM each). The modified electrode could be used for several repeated analyses of dopamine at 5 microM, without noticeable surface fouling. A plausible mechanism for permselectivity was suggested and supported by pertinent experimental data.


Subject(s)
Dopamine/analysis , Electrochemical Techniques/instrumentation , Animals , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Boron/chemistry , Electrochemical Techniques/methods , Electrodes , Pyrroles/chemistry , Tyramine/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...