Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Publication year range
1.
JOR Spine ; 6(1): e1241, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36994467

ABSTRACT

Objective: This study aims to emphasize the initiating role of facet joint (FJ) degeneration in the process of cervical spine degeneration induced by tangential load, and we further validate it in a novel cervical spine degeneration animal model. Methods: The characteristics of cervical degeneration in patients of different ages were summarized through case collection. In the rat models, Hematoxylin-Eosin, Safranin O staining, and micro-computed tomography were used to show the histopathological changes and bone fiber structure of FJ and the height of intervertebral disc (IVD) space. The ingrowth of nociceptive sensory nerve fibers was observed by immunofluorescence staining. Results: FJ degeneration without IVDs degeneration was more common in people with cervical spondylosis in young patients. The obvious degeneration phenotypes of the FJs preceded the IVDs at the same cervical segment in our animal model. The SP+ and CGRP+ sensory nerve fibers were observed in the articular subchondral bone of degenerated FJs and porous endplates of degenerated IVDs. Conclusion: The FJ degeneration may act as the major contributor to cervical spine degeneration in young people. The dysfunction of functional unit of spine, not a certain part of IVD tissue, results in the occurrence of cervical degeneration and neck pain.

2.
Autophagy ; 19(9): 2485-2503, 2023 09.
Article in English | MEDLINE | ID: mdl-36897022

ABSTRACT

Excessive mechanical load (overloading) is a well-documented pathogenetic factor for many mechano stress-induced pathologies, i.e. intervertebral disc degeneration (IDD). Under overloading, the balance between anabolism and catabolism within nucleus pulposus (NP) cells are badly thrown off, and NP cells undergo apoptosis. However, little is known about how the overloading is transduced to the NP cells and contributes to disc degeneration. The current study shows that conditional knockout of Krt8 (keratin 8) within NP aggravates load-induced IDD in vivo, and overexpression of Krt8 endows NP cells greater resistance to overloading-induced apoptosis and degeneration in vitro. Discovery-driven experiments shows that phosphorylation of KRT8 on Ser43 by overloading activated RHOA-PKN (protein kinase N) impedes trafficking of Golgi resident small GTPase RAB33B, suppresses the autophagosome initiation and contributes to IDD. Overexpression of Krt8 and knockdown of Pkn1 and Pkn2, at an early stage of IDD, ameliorates disc degeneration; yet only knockdown of Pkn1 and Pkn2, when treated at late stage of IDD, shows a therapeutic effect. This study validates a protective role of Krt8 during overloading-induced IDD and demonstrates that targeting overloading activation of PKNs could be a novel and effective approach to mechano stress-induced pathologies with a wider window of therapeutic opportunity.Abbreviations: AAV: adeno-associated virus; AF: anulus fibrosus; ANOVA: analysis of variance; ATG: autophagy related; BSA: bovine serum albumin; cDNA: complementary deoxyribonucleic acid; CEP: cartilaginous endplates; CHX: cycloheximide; cKO: conditional knockout; Cor: coronal plane; CT: computed tomography; Cy: coccygeal vertebra; D: aspartic acid; DEG: differentially expressed gene; DHI: disc height index; DIBA: dot immunobinding assay; dUTP: 2'-deoxyuridine 5'-triphosphate; ECM: extracellular matrix; EDTA: ethylene diamine tetraacetic acid; ER: endoplasmic reticulum; FBS: fetal bovine serum; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GPS: group-based prediction system; GSEA: gene set enrichment analysis; GTP: guanosine triphosphate; HE: hematoxylin-eosin; HRP: horseradish peroxidase; IDD: intervertebral disc degeneration; IF: immunofluorescence staining; IL1: interleukin 1; IVD: intervertebral disc; KEGG: Kyoto encyclopedia of genes and genomes; KRT8: keratin 8; KD: knockdown; KO: knockout; L: lumbar vertebra; LBP: low back pain; LC/MS: liquid chromatograph mass spectrometer; LSI: mouse lumbar instability model; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MMP3: matrix metallopeptidase 3; MRI: nuclear magnetic resonance imaging; NC: negative control; NP: nucleus pulposus; PBS: phosphate-buffered saline; PE: p-phycoerythrin; PFA: paraformaldehyde; PI: propidium iodide; PKN: protein kinase N; OE: overexpression; PTM: post translational modification; PVDF: polyvinylidene fluoride; qPCR: quantitative reverse-transcriptase polymerase chain reaction; RHOA: ras homolog family member A; RIPA: radio immunoprecipitation assay; RNA: ribonucleic acid; ROS: reactive oxygen species; RT: room temperature; TCM: rat tail compression-induced IDD model; TCS: mouse tail suturing compressive model; S: serine; Sag: sagittal plane; SD rats: Sprague-Dawley rats; shRNA: short hairpin RNA; siRNA: small interfering RNA; SOFG: safranin O-fast green; SQSTM1: sequestosome 1; TUNEL: terminal deoxynucleotidyl transferase dUTP nick end labeling; VG/ml: viral genomes per milliliter; WCL: whole cell lysate.


Subject(s)
Intervertebral Disc Degeneration , Animals , Mice , Rats , Autophagosomes/metabolism , Autophagy/genetics , Disease Models, Animal , Intervertebral Disc Degeneration/metabolism , Keratin-8/genetics , Keratin-8/metabolism , Phosphorylation , Rats, Sprague-Dawley , RNA, Small Interfering/metabolism
3.
Exp Mol Med ; 55(1): 253-268, 2023 01.
Article in English | MEDLINE | ID: mdl-36653443

ABSTRACT

Mitochondrial dysfunction plays a major role in the development of intervertebral disc degeneration (IDD). Sirtuin 5 (SIRT5) participates in the maintenance of mitochondrial homeostasis through its desuccinylase activity. However, it is still unclear whether succinylation or SIRT5 is involved in the impairment of mitochondria and development of IDD induced by excessive mechanical stress. Our 4D label-free quantitative proteomic results showed decreased expression of the desuccinylase SIRT5 in rat nucleus pulposus (NP) tissues under mechanical loading. Overexpression of Sirt5 effectively alleviated, whereas knockdown of Sirt5 aggravated, the apoptosis and dysfunction of NP cells under mechanical stress, consistent with the more severe IDD phenotype of Sirt5 KO mice than wild-type mice that underwent lumbar spine instability (LSI) surgery. Moreover, immunoprecipitation-coupled mass spectrometry (IP-MS) results suggested that AIFM1 was a downstream target of SIRT5, which was verified by a Co-IP assay. We further demonstrated that reduced SIRT5 expression resulted in the increased succinylation of AIFM1, which in turn abolished the interaction between AIFM1 and CHCHD4 and thus led to the reduced electron transfer chain (ETC) complex subunits in NP cells. Reduced ETC complex subunits resulted in mitochondrial dysfunction and the subsequent occurrence of IDD under mechanical stress. Finally, we validated the efficacy of treatments targeting disrupted mitochondrial protein importation by upregulating SIRT5 expression or methylene blue (MB) administration in the compression-induced rat IDD model. In conclusion, our study provides new insights into the occurrence and development of IDD and offers promising therapeutic approaches for IDD.


Subject(s)
Intervertebral Disc Degeneration , Nucleus Pulposus , Sirtuins , Animals , Mice , Rats , Apoptosis , Apoptosis Inducing Factor/metabolism , Intervertebral Disc Degeneration/metabolism , Mitochondria/metabolism , Nucleus Pulposus/metabolism , Proteomics , Sirtuins/genetics , Sirtuins/metabolism
4.
Arthritis Res Ther ; 24(1): 181, 2022 08 03.
Article in English | MEDLINE | ID: mdl-35922862

ABSTRACT

BACKGROUND: Intervertebral disc (IVD) is a highly rhythmic tissue, which experiences a diurnal cycle of high/low mechanical loading via the changes of activity/rest phase. There are signs that disruption of the peripheral IVD clock is related to the process of intervertebral disc degeneration (IDD). However, it is still unclear whether inflammation could disturb the IVD clock and thus induce the process of IDD. METHODS AND RESULTS: In this study, we used IL-1ß, a commonly used inflammatory factor, to induce IDD and found that the IVD clock was dampened in degenerated human nucleus pulposus specimens, rat nucleus pulposus (NP) tissues, and cells. In this study, we found that the circadian clock of NP cells was totally disrupted by knockdown of the core clock gene brain and muscle arnt-like protein-1 (Bmal1), which thus induced the dysfunction of NP cells. Next, we explored the mechanism of dampened clock-induced IDD and found that knockdown of Bmal1 decreased the expression of nuclear factor erythroid2-related factor 2 (NRF2), a downstream target gene of Bmal1, and increased inflammatory response, oxidative stress reaction, and apoptosis of NP cells. In addition, NRF2 activation attenuated the dysfunction of NP cells induced by the dampened IVD clock and the degenerative process of NP tissues in an organotypic tissue-explant model. CONCLUSIONS: Taken together, our study extends the relationship between peripheral clock and IVD homeostasis and provides a potential therapeutic method for the prevention and recovery of IDD by targeting the clock-controlled gene Nrf2.


Subject(s)
Intervertebral Disc Degeneration , Intervertebral Disc , Nucleus Pulposus , ARNTL Transcription Factors , Animals , Humans , Inflammation/genetics , Inflammation/metabolism , Intervertebral Disc/metabolism , Intervertebral Disc Degeneration/genetics , Intervertebral Disc Degeneration/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Nucleus Pulposus/metabolism , Rats
5.
Bioact Mater ; 14: 350-363, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35386822

ABSTRACT

Low back pain is one of the most serious public health problems worldwide and the major clinical manifestation of intervertebral disc degeneration (IVDD). The key pathological change during IVDD is dysfunction of the annulus fibrosus (AF). However, due to the lack of an in-depth understanding of AF biology, the methods to reconstruct the AF are very limited. In this study, the mice AF cell atlas were decoded by single-cell RNA sequencing to provide a guide for AF reconstruction. The results first identify a new population of AF cells, fibrochondrocyte-like AF cells, which synthesize both collagen I and collagen II and are potential functional cells for AF reconstruction. According to the dual features of the AF extracellular matrix, a composite hydrogel based on the acylation of methacrylated silk fibroin with methacrylated hyaluronic acid was produced. To obtain the ability to stimulate differentiation, the composite hydrogels were combined with a fibrochondrocyte-inducing supplement. Finally, reconstruction of the AF defects, by the novel AF stem cell-loaded composite hydrogel, could be observed, its amount of chondroid matrices recovered to 31.7% of AF aera which is significantly higher than that in other control groups. In summary, this study decodes the AF cell atlas, based on which a novel strategy for AF reconstruction is proposed.

6.
J Orthop Translat ; 33: 162-173, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35415072

ABSTRACT

Background/Objective: Intervertebral disc (IVD) degeneration (IVDD) that greatly affected by regional biomechanical environment is a major cause of low back pain. Injectable hydrogels have been commonly studied for treatment of IVDD due to their capability of mimicking extracellular matrix structure to support cellular behavior and clinical prospects in minimally invasive treatment. However, most hydrogels suffer from complicated chemistry, potential uncertainty and toxicity from in-situ gelation, and mismatch with IVD mechanical environment that limit their therapeutic effects or clinical translation in IVDD or intervertebral disc defect repair. For IVD lesion repair, the study aims to develop a novel hydrogel with shear-thinning enabled injectability, high bio-safety, and mechanical properties adaptable to the IVD environment, using a simple chemistry and method. And therapeutic efficacy of the novel hydrogel in the treatment of IVDD or intervertebral disc defect will be revealed. Methods: A glycerol cross-linked PVA gel (GPG) was synthesized based on multiple H-bonds formation between glycerol molecules and PVA chains. The rheological and mechanical properties were tested. The swelling ratio was measured. The micro-architecture was observed through scanning and transmission electron microscopes. Nucleus pulposus (NP) cells were cultured in GPG-coated plates or silicone chambers treated under hydrostatic or dynamic loading in vitro, and examined for proliferation, vitality, apoptosis, expression of catabolic and anabolic markers. GPG was injected in needle puncture (IDD) or NP discectomy (NPD) models in vivo, and examined through magnetic resonance imaging, micro-computed tomography scanning and histological staining. Results: GPG had a highly porous structure consisting of interconnected pores. Meanwhile, the GPG had NP-like viscoelastic property, and was able to withstand the cyclic deformation while exhibiting a prominent energy-dissipating capability. In vitro cell tests demonstrated that, the hydrogel significantly down-regulated the expression of catabolic markers, maintained the level of anabolic markers, preserved cell proliferation and vitality, reduced apoptotic rate of NP cells under pathologically hydrostatic and dynamic loading environments compared to cells cultured on untreated plate or silicone chamber. In vivo animal studies revealed that injection of GPG efficiently maintained NP structural integrity, IVD height and relative water content in IDD models, and stimulated the fibrous repair in NPD models. Conclusion: This study showed that GPG, with high injectability, NP-like viscoelastic characteristics, good energy-dissipating properties and swelling capacities, preserved NP cells vitality against pathological loading, and had therapeutic effects on IVD repair in IDD and NPD models. The translational potential of this article: Effective clinical strategy for treatment of intervertebral disc degeneration (IVDD) is still lacking. This study demonstrates that injection of a hydrogel with nucleus pulposus-matched viscoelastic property could remarkably prevent the IVDD progress. Prepared with simple chemistry and procedure, the cell/drug-free GPG with high bio-safety and shear-thinning enabled injectability bears great translational potential for the clinical treatment of IVDD via a minimally invasive approach.

7.
Bone Res ; 10(1): 20, 2022 Feb 25.
Article in English | MEDLINE | ID: mdl-35217644

ABSTRACT

The circadian clock participates in maintaining homeostasis in peripheral tissues, including intervertebral discs (IVDs). Abnormal mechanical loading is a known risk factor for intervertebral disc degeneration (IDD). Based on the rhythmic daily loading pattern of rest and activity, we hypothesized that abnormal mechanical loading could dampen the IVD clock, contributing to IDD. Here, we investigated the effects of abnormal loading on the IVD clock and aimed to inhibit compression-induced IDD by targeting the core clock molecule brain and muscle Arnt-like protein-1 (BMAL1). In this study, we showed that BMAL1 KO mice exhibit radiographic features similar to those of human IDD and that BMAL1 expression was negatively correlated with IDD severity by systematic analysis based on 149 human IVD samples. The intrinsic circadian clock in the IVD was dampened by excessive loading, and BMAL1 overexpression by lentivirus attenuated compression-induced IDD. Inhibition of the RhoA/ROCK pathway by Y-27632 or melatonin attenuated the compression-induced decrease in BMAL1 expression. Finally, the two drugs partially restored BMAL1 expression and alleviated IDD in a diurnal compression model. Our results first show that excessive loading dampens the circadian clock of nucleus pulposus tissues via the RhoA/ROCK pathway, the inhibition of which potentially protects against compression-induced IDD by preserving BMAL1 expression. These findings underline the importance of the circadian clock for IVD homeostasis and provide a potentially effective therapeutic strategy for IDD.

8.
Front Cell Dev Biol ; 8: 613006, 2020.
Article in English | MEDLINE | ID: mdl-33363176

ABSTRACT

Intervertebral disc degeneration (IDD) has been generally accepted as the major cause of low back pain (LBP), which causes an enormous socioeconomic burden. Previous studies demonstrated that the apoptosis of nucleus pulposus (NP) cells and the dyshomeostasis of extracellular matrix (ECM) contributed to the pathogenesis of IDD, and effective therapies were still lacking. Quercetin, a natural flavonoid possessing a specific effect of autophagy stimulation and SIRT1 activation, showed some protective effect on a series of degenerative diseases. Based on previous studies, we hypothesized that quercetin might have therapeutic effects on IDD by inhibiting the apoptosis of NP cells and dyshomeostasis of ECM via the SIRT1-autophagy pathway. In this study, we revealed that quercetin treatment inhibited the apoptosis of NP cells and ECM degeneration induced by oxidative stress. We also found that quercetin promoted the expression of SIRT1 and autophagy in NP cells in a dose-dependent manner. Autophagy inhibitor 3-methyladenine (3-MA) reversed the protective effect of quercetin on apoptosis and ECM degeneration. Moreover, SIRT1 enzymatic activity inhibitor EX-527, suppressed quercetin-induced autophagy and the protective effect on NP cells, indicating that quercetin protected NP cells against apoptosis and prevented ECM degeneration via SIRT1-autophagy pathway. In vivo, quercetin was also demonstrated to alleviate the progression of IDD in rats. Taken together, our results suggest that quercetin prevents IDD by promoting SIRT1-dependent autophagy, indicating one novel and effective therapeutic method for IDD.

9.
Ying Yong Sheng Tai Xue Bao ; 18(3): 531-6, 2007 Mar.
Article in Chinese | MEDLINE | ID: mdl-17552188

ABSTRACT

With pot experiment, this paper studied the effects of silicon supply on drought-resistance capability of maize plant. The results showed that under mild and severe drought stress, supplying silicon could increase the plant biomass by 31.1%-33.3% and 23.7%-40.5%, respectively, compared with the control. Silicon enhanced the net photosynthetic rate by 10.9% --28.8%, increased the chlorophyll content and POD, SOD and CAT activities by 4.0% -11.9%, 6.4% -26.4%, 17.8% -26.8% and 3.2%-33.5%, respectively, and restrained the increase of leaf plasma membrane permeability and MDA content. Correlation analysis indicated that there was a significant correlation between plant dry matter accumulation and diurnal photosynthetic cumulates (r = 0. 9357, P < 0.05), demonstrating that the enhancement of photosynthesis under effect of silicon supply was the main factor inducing the increase of dry matter accumulation under drought stress. The higher antioxidative enzyme activities with silicon supply lightened the injury effect of free radicals, being another important factor inducing the increase of plant drought-resistance capability.


Subject(s)
Photosynthesis/physiology , Silicon/pharmacology , Superoxide Dismutase/metabolism , Zea mays/enzymology , Zea mays/physiology , Antioxidants/metabolism , Biomass , Disasters , Peroxidase/metabolism , Photosynthesis/drug effects , Zea mays/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...