Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomicro Lett ; 14(1): 82, 2022 Mar 25.
Article in English | MEDLINE | ID: mdl-35334003

ABSTRACT

HIGHLIGHTS: High-performance Zn||I2 batteries were established by coating zeolite protecting layers. The Zn2+-conductive layer suppresses I3- shuttling, Zn corrosion/dendrite growth. The Zeolite-Zn||I2 batteries achieve long lifespan (91.92% capacity retention after 5600 cycles), high coulombic efficiencies (99.76% in average) and large capacity (203-196 mAh g-1 at 0.2 A g-1) simultaneously. The intrinsically safe Zn||I2 battery, one of the leading candidates aiming to replace traditional Pb-acid batteries, is still seriously suffering from short shelf and cycling lifespan, due to the uncontrolled I3--shuttling and dynamic parasitic reactions on Zn anodes. Considering the fact that almost all these detrimental processes terminate on the surfaces of Zn anodes, modifying Zn anodes' surface with protecting layers should be one of the most straightforward and thorough approaches to restrain these processes. Herein, a facile zeolite-based cation-exchange protecting layer is designed to comprehensively suppress the unfavored parasitic reactions on the Zn anodes. The negatively-charged cavities in the zeolite lattice provide highly accessible migration channels for Zn2+, while blocking anions and electrolyte from passing through. This low-cost cation-exchange protecting layer can simultaneously suppress self-discharge, anode corrosion/passivation, and Zn dendrite growth, awarding the Zn||I2 batteries with ultra-long cycle life (91.92% capacity retention after 5600 cycles at 2 A g-1), high coulombic efficiencies (99.76% in average) and large capacity (203-196 mAh g-1 at 0.2 A g-1). This work provides a highly affordable approach for the construction of high-performance Zn-I2 aqueous batteries.

2.
ACS Appl Mater Interfaces ; 13(21): 24756-24764, 2021 Jun 02.
Article in English | MEDLINE | ID: mdl-34004110

ABSTRACT

Zinc-iodine (Zn/I2) batteries are recognized as a kind of leading candidate for large-scale energy storage systems, owing to the high-capacity dissolution-deposition reactions on both electrodes. Nevertheless, the lifespan of Zn/I2 batteries is severely limited by the uncontrolled shuttling of triiodide ions (I3-) and unfavorable side reactions on Zn anodes. Herein, an alginate-based polyanionic hydrogel electrolyte is designed and synthesized by ion exchange and Zn2+-induced cross-linking. The immobile, negatively charged polyanionic chains on the hydrogel skeleton effectively block I3- from shuttling, while simultaneously transporting cations that are indispensable for battery chemistry. Moreover, this hydrogel can also enhance the cycling durability of Zn anodes by alleviating Zn's dendritic growth and corrosion reactions, due to the homogenized Zn2+ flux and reduced interfacial contact between free water and metallic Zn. Consequently, this alginate-based hydrogel electrolyte enables stable Zn plating/stripping for over 600 h at 2 mA cm-2 and 2 mAh cm-2 (corresponding to 10% depth of discharge). Serving as an electrolyte for Zn/I2 full batteries, this hydrogel helps the battery to achieve a high capacity of 183.4 mAh g-1 (capacity retention = 97.6%) after even 200 cycles at 0.2 A g-1, 77.4% higher than that of the traditional ZnSO4 aqueous counterpart (residual capacity = 41.5 mAh g-1). This work indicates the promising potential of electrolyte design on the performance improvement of aqueous Zn/I2 batteries.

SELECTION OF CITATIONS
SEARCH DETAIL
...