Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 84
Filter
1.
Nat Commun ; 15(1): 8058, 2024 Sep 14.
Article in English | MEDLINE | ID: mdl-39277594

ABSTRACT

Pathogen-host competition for manganese and intricate immunostimulatory pathways severely attenuates the efficacy of antibacterial immunotherapy against biofilm infections associated with orthopaedic implants. Herein, we introduce a spatiotemporal sono-metalloimmunotherapy (SMIT) strategy aimed at efficient biofilm ablation by custom design of ingenious biomimetic metal-organic framework (PCN-224)-coated MnO2-hydrangea nanoparticles (MnPM) as a metalloantibiotic. Upon reaching the acidic H2O2-enriched biofilm microenvironment, MnPM can convert abundant H2O2 into oxygen, which is conducive to significantly enhancing the efficacy of ultrasound (US)-triggered sonodynamic therapy (SDT), thereby exposing bacteria-associated antigens (BAAs). Moreover, MnPM disrupts bacterial homeostasis, further killing more bacteria. Then, the Mn ions released from the degraded MnO2 can recharge immune cells to enhance the cGAS-STING signaling pathway sensing of BAAs, further boosting the immune response and suppressing biofilm growth via biofilm-specific T cell responses. Following US withdrawal, the sustained oxygenation promotes the survival and migration of fibroblasts, stimulates the expression of angiogenic growth factors and angiogenesis, and neutralizes excessive inflammation. Our findings highlight that MnPM may act as an immune costimulatory metalloantibiotic to regulate the cGAS-STING signaling pathway, presenting a promising alternative to antibiotics for orthopaedic biofilm infection treatment and pro-tissue repair.


Subject(s)
Biofilms , Manganese Compounds , Oxides , Oxygen , Biofilms/drug effects , Animals , Mice , Manganese Compounds/chemistry , Manganese Compounds/pharmacology , Oxygen/metabolism , Oxides/pharmacology , Oxides/chemistry , Anti-Bacterial Agents/pharmacology , Hydrogen Peroxide/metabolism , Immunotherapy/methods , Humans , Ultrasonic Therapy/methods , Nanoparticles/chemistry , Signal Transduction/drug effects , Antigens, Bacterial/immunology , Staphylococcus aureus/drug effects , Female
2.
BMC Musculoskelet Disord ; 25(1): 691, 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39217319

ABSTRACT

BACKGROUND: This study used finite element analysis (FEA) to compare the biomechanical stability of bispherical metal augment (BA) and wedge-shaped trabecular-metal augment (TA) in different acetabular defect reconstruction models, thereby explaining the application value of this novel bispherical augment in complex hip revision. METHODS: Three different acetabular defect pelvis models originating from three representative patients with different types of severe acetabular defects (Paprosky IIC, IIIA, and IIIB) were constructed and reconstruction with BA and TA technique was simulated. Based on the FEA models, the displacement of reconstruction implants, relative displacement of bone implants, and hemi-pelvic von Mises stress were investigated under static loads. RESULTS: BA acquired smaller reconstruction system displacement, less relative displacement of bone implants, and lower pelvic von Mises stress than TA in all Paprosky IIC, IIIA, and IIIB defect reconstructions. CONCLUSION: The FEA results show that BA could acquire favourable biomechanical stability in severe acetabular defect reconstruction. This technique is a reliable method in complex hip revision.


Subject(s)
Acetabulum , Arthroplasty, Replacement, Hip , Finite Element Analysis , Hip Prosthesis , Humans , Acetabulum/surgery , Acetabulum/physiopathology , Biomechanical Phenomena/physiology , Arthroplasty, Replacement, Hip/methods , Arthroplasty, Replacement, Hip/instrumentation , Prosthesis Design , Female , Stress, Mechanical , Plastic Surgery Procedures/methods , Male
3.
Biomaterials ; 307: 122515, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38401481

ABSTRACT

Implant-associated infections (IAIs) pose a significant threat to orthopedic surgeries. Bacteria colonizing the surface of implants disrupt bone formation-related cells and interfere with the osteoimmune system, resulting in an impaired immune microenvironment and osteogenesis disorders. Inspired by nature, a zeolitic imidazolate framework (ZIF)-sealed smart drug delivery system on Ti substrates (ZSTG) was developed for the "natural-artificial dual-enzyme intervention (NADEI)" strategy to address these challenges. The subtle sealing design of ZIF-8 on the TiO2 nanotubes ensured glucose oxidase (GOx) activity and prevented its premature leakage. In the acidic infection microenvironment, the degradation of ZIF-8 triggered the rapid release of GOx, which converted glucose into H2O2 for disinfection. The Zn2+ released from degraded ZIF-8, as a DNase mimic, can hydrolyze extracellular DNA, which further enhances H2O2-induced disinfection and prevents biofilm formation. Importantly, Zn2+-mediated M2 macrophage polarization significantly improved the impaired osteoimmune microenvironment, accelerating bone repair. Transcriptomics revealed that ZSTG effectively suppressed the inflammatory cascade induced by lipopolysaccharide while promoting cell proliferation, homeostasis maintenance, and bone repair. In vitro and in vivo results confirmed the superior anti-infective, osteoimmunomodulatory, and osteointegrative capacities of the ZSTG-mediated NADEI strategy. Overall, this smart bionic platform has significant potential for future clinical applications to treat IAIs.


Subject(s)
Anti-Infective Agents , Zeolites , Osseointegration , Hydrogen Peroxide/pharmacology , Macrophages , Anti-Infective Agents/pharmacology , Osteogenesis
4.
Aging (Albany NY) ; 15(19): 10732-10745, 2023 10 11.
Article in English | MEDLINE | ID: mdl-37827691

ABSTRACT

Osteoporosis is one of the major health problems characterized by decreased bone density and increased risk of fractures. Nowadays, the treating strategies against osteoporosis are efficient, but still have some drawbacks. Micheliolide, a guaianolide sesquiterpene lactone isolated from Michelia compressa and Michelia champac, has been reported to have anti-inflammatory effects. Here, our data suggest that Micheliolide could protect mice from ovariectomy induced bone loss. According to the Micro-CT scan and histomorphometry quantification data, Micheliolide treatment inhibits excessive osteoclast bone resorption without affecting bone formation in estrogen deficiency mice. Consistently, our data suggest that Micheliolide could inhibit osteoclastogenesis in vitro. Additionally, we confirmed that Micheliolide inhibits osteoclasts formation via inhibiting P38 MAPK signaling pathway, and P79350 (a P38 agonist) could rescue this effect. In summary, our data suggest that Micheliolide could ameliorate estrogen deficiency-induced bone loss via attenuating osteoclastogenesis. Hence, Micheliolide could be used as a novel anti-resorptive agent against osteoporosis.


Subject(s)
Bone Resorption , Osteoporosis , Female , Animals , Mice , Osteoclasts , Bone Resorption/drug therapy , Bone Resorption/prevention & control , Bone Resorption/etiology , Osteogenesis , Osteoporosis/drug therapy , Osteoporosis/etiology , Osteoporosis/prevention & control , Sesquiterpenes, Guaiane/pharmacology , Estrogens/pharmacology , Estrogens/metabolism , Cell Differentiation , Mice, Inbred C57BL
5.
Exp Mol Med ; 55(9): 2051-2066, 2023 09.
Article in English | MEDLINE | ID: mdl-37653038

ABSTRACT

The identification of key regulatory factors that control osteoclastogenesis is important. Accumulating evidence indicates that circular RNAs (circRNAs) are discrete functional entities. However, the complexities of circRNA expression as well as the extent of their regulatory functions during osteoclastogenesis have yet to be revealed. Here, based on circular RNA sequencing data, we identified a circular RNA, circFam190a, as a critical regulator of osteoclast differentiation and function. During osteoclastogenesis, circFam190a is significantly upregulated. In vitro, circFam190a enhanced osteoclast formation and function. In vivo, overexpression of circFam190a induced significant bone loss, while knockdown of circFam190a prevented pathological bone loss in an ovariectomized (OVX) mouse osteoporosis model. Mechanistically, our data suggest that circFam90a enhances the binding of AKT1 and HSP90ß, promoting AKT1 stability. Altogether, our findings highlight the critical role of circFam190a as a positive regulator of osteoclastogenesis, and targeting circFam190a might be a promising therapeutic strategy for treating pathological bone loss.


Subject(s)
Bone Resorption , Osteoporosis , RNA, Circular , Animals , Mice , Bone Resorption/metabolism , Cell Differentiation/genetics , Osteoclasts/metabolism , Osteogenesis/genetics , Osteoporosis/metabolism , RANK Ligand/metabolism , RNA, Circular/genetics
6.
J Orthop Surg Res ; 18(1): 229, 2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36944987

ABSTRACT

BACKGROUND: This study aimed to investigate the potential mechanism of YAP1 in the senescence and degeneration of endplate chondrocytes induced by intermittent cyclic mechanical tension (ICMT). METHODS: According to the Pfirrmann grade evaluation classification, 30 human endplate cartilage tissues were divided into the lumbar vertebra fracture (LVF) group and lumbar disc herniation (LDH) group. Then, quantitative reverse transcription polymerase chain reaction, western blot, flow cytometry, hematoxylin-eosin staining, and senescence-associated ß-galactosidase staining were performed. The difference in extracellular matrix expression between LVF and LDH endplate cartilage was detected. Second, the effect of ICMT on endplate chondrocytes degeneration was observed. Finally, the key regulatory role of YAP1 in ICMT-induced endplate cartilage degeneration was further verified. RESULTS: In degraded human endplate cartilage and tension-induced degraded endplate chondrocytes, the expression of YAP1, COL-2A, and Sox9 was decreased. Conversely, the expression of p53 and p21 was increased. By regulating YAP1 in vivo and in vitro, we can achieve alleviation of ICMT-induced senescence of endplate chondrocytes and effective treatment of disc degeneration. CONCLUSIONS: ICMT could induce senescence and degeneration of endplate chondrocytes, and ICMT-induced senescence and degeneration of endplate chondrocytes could be alleviated by regulating YAP1 expression.


Subject(s)
Chondrocytes , Intervertebral Disc Degeneration , Humans , Chondrocytes/metabolism , Cartilage , Stress, Mechanical , Intervertebral Disc Degeneration/metabolism , Extracellular Matrix/metabolism
7.
Front Pharmacol ; 13: 1062119, 2022.
Article in English | MEDLINE | ID: mdl-36523493

ABSTRACT

Primary cilia have emerged as the cellular "antenna" that can receive and transduce extracellular chemical/physical signals, thus playing an important role in regulating cellular activities. Although the electromagnetic field (EMF) is an effective treatment for bone fractures since 1978, however, the detailed mechanisms leading to such positive effects are still unclear. Primary cilia may play a central role in receiving EMF signals, translating physical signals into biochemical information, and initiating various signalingsignaling pathways to transduce signals into the nucleus. In this review, we elucidated the process of bone healing, the structure, and function of primary cilia, as well as the application and mechanism of EMF in treating fracture healing. To comprehensively understand the process of bone healing, we used bioinformatics to analyze the molecular change and associated the results with other studies. Moreover, this review summarizedsummarized some limitations in EMFs-related research and provides an outlook for ongoing studies. In conclusion, this review illustrated the primary cilia and related molecular mechanisms in the EMF-induced bone healing process, and it may shed light on future research.

8.
Front Pharmacol ; 13: 1058469, 2022.
Article in English | MEDLINE | ID: mdl-36353501

ABSTRACT

Osteoarthritis, as a common joint disease among middle-aged and elderly people, has many problems, such as diverse pathogenesis, poor prognosis and high recurrence rate, which seriously affects patients' physical and mental health and reduces their quality of life. At present, the pathogenesis of osteoarthritis is not completely clear, and the treatment plan is mainly to relieve symptoms and ensure basic quality of life. Therefore, it is particularly urgent to explore the pathogenesis of osteoarthritis. Protein, as organic macromolecule which plays a major role in life activities, plays an important role in the development of disease. Through protein omics, this study found that with the increase of age, excessive sulfur oxidation occurred in endoplasmic reticulum of chondrocytes, which then drove the occurrence of inflammatory reaction, and provided a direction for the follow-up molecular targeted.

9.
Global Spine J ; : 21925682221135768, 2022 Nov 04.
Article in English | MEDLINE | ID: mdl-36330701

ABSTRACT

STUDY DESIGN: Basic research. OBJECTIVE: To prepared 3 DNPM/chitosan hybrid hydrogels and chose the best DNPM/chitosan hybrid hydrogel for NP tissue engineering. METHODS: Three DNPM/chitosan hybrid hydrogels were fabricated by changing the ratio of the decellularized NP matrix to chitosan and crosslinking with genipin. NP stem cells (NPSCs) were cultured on the hybrid hydrogels and their proliferation, morphology, and gene expression were evaluated. Finally, an in vivo experiment was performed to evaluate the immune response to the hydrogels. RESULTS: The adhered NPSCs proliferated well on the hybrid hydrogel. The gene expression of NP-related collagen type II, aggrecan, and Sox-9 from NPSCs cultured on DNPM/chitosan hybrid hydrogel-1 was greater than from cells cultured on DNPM/chitosan hybrid hydrogel-2 and DNPM/chitosan hybrid hydrogel-3. Few inflammatory cells were observed during the in vivo experiment with DNPM/chitosan hybrid hydrogel-1. CONCLUSIONS: DNPM/chitosan hybrid hydrogel-1 is a potential candidate scaffold for NP tissue engineering.

10.
Small ; 18(46): e2204377, 2022 11.
Article in English | MEDLINE | ID: mdl-36216771

ABSTRACT

The pH-responsive theragnostics exhibit great potential for precision diagnosis and treatment of diseases. Herein, acidity-activatable nanoparticles of GB@P based on glucose oxidase (GO) and polyaniline are developed for treatment of biofilm infection. Catalyzed by GO, GB@P triggers the conversion of glucose into gluconic acid and hydrogen peroxide (H2 O2 ), enabling an acidic microenvironment-activated simultaneously enhanced photothermal (PT) effect/amplified photoacoustic imaging (PAI). The synergistic effects of the enhanced PT efficacy of GB@P and H2 O2 accelerate biofilm eradication because the penetration of H2 O2 into biofilm improves the bacterial sensitivity to heat, and the enhanced PT effect destroys the expressions of extracellular DNA and genomic DNA, resulting in biofilm destruction and bacterial death. Importantly, GB@P facilitates the polarization of proinflammatory M1 macrophages that initiates macrophage-related immunity, which enhances the phagocytosis of macrophages and secretion of proinflammatory cytokines, leading to a sustained bactericidal effect and biofilm eradication by the innate immunomodulatory effect. Accordingly, the nanoplatform of GB@P exhibits the synergistic effects on the biofilm eradication and bacterial residuals clearance through a combination of the enhanced PT effect with immunomodulation. This study provides a promising nanoplatform with enhanced PT efficacy and amplified PAI for diagnosis and treatment of biofilm infection.


Subject(s)
Hyperthermia, Induced , Nanoparticles , Photoacoustic Techniques , Glucose Oxidase , Hyperthermia, Induced/methods , Biofilms , Macrophages , Immunomodulation
SELECTION OF CITATIONS
SEARCH DETAIL