Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 13(22)2020 Nov 23.
Article in English | MEDLINE | ID: mdl-33238483

ABSTRACT

We propose an alignment-free and polarization-selective bidirectional absorber composed of a one-dimensional bilayer Au grating array buried in a silicon nitride spacer. The absorptivity of the designed structure is more than 95% (77%) under normal forward (backward) TM-polarized light incidence, and is more than 80% (70%) within a forward (backward) incident angle up to 30°. The great bidirectional absorption performance is illustrated by the resonance coupling of the surface plasmon polaritons (SPPs) resonance, the propagating surface plasmon (PSP) resonance and the localized surface plasmon (LSP) resonance under TM-polarized wave illumination. Moreover, the excitation of the Fano-like resonance mode of the proposed metasurface can produce two significantly different peaks in the absorption spectrum under the oblique TM-polarized incidence, which is beneficial for the plasmon-sensing application. Therefore, the proposed bidirectional metasurface absorber can be a candidate in the application of optical camouflage, thermal radiation, solar cells and optical sensing.

2.
Opt Express ; 28(16): 24285-24297, 2020 Aug 03.
Article in English | MEDLINE | ID: mdl-32752410

ABSTRACT

High-contrast gratings (HCGs) can be designed as a resonator with high-quality factor and surface-normal emission, which are excellent characters for designing optical devices. In this work, we combine HCGs with plasmonic graphene structure to achieve an ultrathin five-band coherent perfect absorber (CPA). The presented CPA can achieve multi- and narrow-band absorption with high intensity under a relatively large incident angle. The good agreement between theoretical analysis and numerical simulated results demonstrates that our proposed HCGs-based structure is feasible to realize CPA. Besides, by dynamically adjusting the Fermi energy of graphene, we realize the active tunability of resonance frequency and absorption intensity simultaneously. Benefitting from the combination of HCGs and the one-atom thickness of graphene, the proposed device possesses an extremely thin feature. Our work proposes a novel method to manipulate coherent perfect absorption and is helpful to design tunable multi-band and ultrathin absorbers.

3.
Opt Express ; 28(4): 4563-4570, 2020 Feb 17.
Article in English | MEDLINE | ID: mdl-32121690

ABSTRACT

Perfect absorption and polarization conversion of electromagnetic wave (EM) are of significant importance for numerous optical applications. Vanadium dioxide (VO2), which can be converted from insulating state to metallic state by being exposed to different temperatures, is introduced into a metallic square loop to constitute a switchable bifunctional plasmonic metasurface for perfect absorption and polarization conversion. Combined theoretical analyses and numerical simulations, the results show that at temperature T = 356 K, the metasurface acts as a perfect absorber with nearly 91% absorptance at the wavelength of 1547 nm. When the temperature decreases to T = 292 K, the metasurface expresses as a high efficiency (about 94%) polarization converter with the polarization conversion ratio up to 86% around 1550 nm. The designed bifunctional metasurface has plenty of potential applications such as energy harvesting, optical sensing and imaging. Moreover, it can also provide guidance to research tunable, smart and multifunctional devices.

4.
Opt Express ; 27(21): 31062-31074, 2019 Oct 14.
Article in English | MEDLINE | ID: mdl-31684346

ABSTRACT

Traditional absorbers are usually sandwich structures in which a metallic ground plane is employed to prevent the transmission. Such absorbers suffer from a major drawback that incident light can only irradiate from the front of the absorbers. In this paper, a novel absorber with bulk Dirac semimetal (BDS)-AlCuFe quasicrystals is proposed to realize bidirectional and dynamically tunable terahertz (THz) perfect absorption. The proposed structure consists of two layers of AlCuFe plates with rectangular apertures and a dielectric spacer. By adjusting transverse distance between the top and bottom rectangular apertures, perfect absorption could be realized under TM polarization. Simulation results show that perfect absorption can be obtained whether light irradiates from the front or back of the system, indicating a performance of bidirectional absorption. In addition, benefiting from the variable Fermi level of AlCuFe, the resonance frequency can be dynamically tuned in the THz range. Our work will stimulate more investigations on BDS-based bidirectional absorbers and optical modulators.

5.
Opt Express ; 25(13): 14406-14413, 2017 Jun 26.
Article in English | MEDLINE | ID: mdl-28789027

ABSTRACT

Broad-band and high-efficiency polarization converter is an imperative component in communication systems, but its functionality often clashes with the constraint of materials. Herein we theoretically and numerically demonstrate that a broad-band and high-efficiency 90° polarization rotator around 1550 nm can be realized using an ultrathin and geometry-optimized composite structure. Based on simulation results, the reflection efficiency and operation bandwidth is up to ≈80% and ≈300 nm, respectively, for the 90° polarization rotator. With similar concept, we also demonstrate a quarter-wave plate with an efficiency of 94% and bandwidth of 110 nm. The electric filed distribution indicates that the conversion behaviors are caused by the strong magnetic coupling in the designed composite structure. Furthermore, the polarization ellipticity properties are investigated to further understand the broad-band effect of the proposed polarization convertors.

6.
Opt Express ; 24(5): 5376-5386, 2016 Mar 07.
Article in English | MEDLINE | ID: mdl-29092361

ABSTRACT

A graphene-based long-range surface plasmon polariton (LRSPP) hybrid waveguide, which is composed of two identical outer graphene nanoribbons and two identical inner silica layers symmetrically placed on both sides of a silicon layer, is investigated using the finite-difference time-domain method. By combining the simulated results with the coupled mode perturbation theory, we demonstrate that the LRSPP and short-range SPP (SRSPP) modes originate from the coupling of the same modes of the two graphene nanoribbons. For the LRSPP mode, an ultra-long propagation length (~10 µm) and an ultra-small mode area (~10-7A0, where A0 is the diffraction-limited mode area) can be simultaneously achieved. This waveguide can be used for future photonic integrated circuits functional in the mid-infrared range.

SELECTION OF CITATIONS
SEARCH DETAIL
...