Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Res ; 252(Pt 2): 118938, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38649014

ABSTRACT

Fly ash (FA) is mainly composed of silica, alumina, and other metal oxide components, and has a positive stabilizing effect on soil heavy metals. Biochar composites produced from FA and corn stover (CS) can improve its remediation performance. Therefore, a batch of biochar composites (alkali-fused FA-CS biochars, ABs), synthesized via co-pyrolysis of CS and alkali-fused FA (AFFA) at different temperatures of 300, 500, and 700 °C (AB300-1, AB500-1, and AB700-1) and CS to AFFA mass ratios of 10:1, 10:2, and 10:5 (AB500-1, AB500-2, and AB500-5), was used to remediate lead (Pb)-contaminated soil. Compared with pristine biochars (BCs), ABs were enriched with oxygen-containing functional groups (Si-O-Si and Si-O) and aromatic structures. The ABs prepared at lower pyrolytic temperature (≤500 °C) and lower ratio of CS to AFFA (10:1) showed higher yield and stability. The contents of Toxicity Characteristic Leaching Procedure (TCLP)-extractable Pb and DTPA-CaCl2-triethanolamine (DTPA)-extractable Pb were generally lower in the soils amended with ABs than BCs. Compared with other ABs such as AB300-1, AB500-2, AB500-5, and AB700-1, the soil amended with AB500-1 had lower contents of TCLP and DTPA-extractable Pb (24% reduction), exhibiting superior performance in stabilizing Pb in the soil. The gradual decrease of DTPA-extractable Pb content in the soil with increasing dosage of AB500-1 amendments suggests that AB500-1 facilitated the conversion of bioavailable Pb to the stable and less toxic residual fractions. Specifically, the highest percentage of residual fraction of Pb in soil amended with AB500-1 was 14%. Correlation analyses showed that the soil DTPA-extractable Pb content decreased with the increase of soil pH and cation-exchange capacity (CEC) value. ABs stabilize Pb in the soils mainly via electrostatic attraction, precipitation, cation-π interaction, cation exchange, and complexation. These findings provide insights for producing functionalized biochar composites from industrial waste like FA and biomass waste for remediating the soils polluted by heavy metals.


Subject(s)
Charcoal , Coal Ash , Environmental Restoration and Remediation , Lead , Pyrolysis , Soil Pollutants , Zea mays , Charcoal/chemistry , Zea mays/chemistry , Lead/chemistry , Lead/analysis , Coal Ash/chemistry , Soil Pollutants/chemistry , Soil Pollutants/analysis , Environmental Restoration and Remediation/methods , Alkalies/chemistry , Soil/chemistry
2.
Environ Sci Pollut Res Int ; 30(12): 35064-35075, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36522576

ABSTRACT

Large amounts of secondary pollutants are released during traditional composting, and rapid fermentation is desirable for the stabilization of food wastes. Food wastes were mixed with rice husk, placed in a bioreactor, and stirred continuously to achieve high-temperature fermentation for 14 h. The transformations of the mixtures were analyzed using elemental and spectral analysis combined with kinetic equations and two-dimensional correlation spectroscopy. The carbohydrates, proteins, and aliphatic compounds of food waste were degraded after 4 h of fermentation. Transformations of dissolved organic and sulfur- and nitrogen-containing substances followed first-order kinetic equations with reaction rate constants of 0.142 h-1, 0.098 h-1, and 0.016 h-1, respectively. Organic matter conversion was in the following order: aliphatic → protein → carbohydrate and followed the order, acrylamide C → O-alkyl C → anomeric C at the molecular level. The fermentation process was characterized by the increase in protein- and fulvic-like compounds. Fulvic acid substances gradually accumulated during the late fermentation period. Thus, dissolved organic matter components were gradually transformed into humic substances with increasing fermentation time. The sequence of transformation during the fermentation process was, tyrosine-like → tryptophan-like → fulvic-like substances. Humification mainly occurred in the mature stage of composting; therefore, it was verified that the food waste was stabilized by a 14-h fermentation.


Subject(s)
Refuse Disposal , Refuse Disposal/methods , Fermentation , Temperature , Food , Humic Substances/analysis , Carbohydrates , Proteins , Soil
3.
Curr Microbiol ; 79(11): 351, 2022 Oct 08.
Article in English | MEDLINE | ID: mdl-36209271

ABSTRACT

Petroleum contamination may lead to variations in soil microbial community structure and activities. The bioremediation of petroleum-contaminated soil typically depends on the characteristics and activities of oil-degrading microorganisms, which can be introduced or be part of the native soil microbiota. Thus, analyzing the structure of the microbial community and internal relationships in the bioremediation process is critical. Our study characterized the physical and chemical properties, microbial community structure, and microbial diversity of surface soil collected near an oilfield. The total carbon (TC), total organic carbon (TOC), and microbial diversity in oil-contaminated soil was found higher than in uncontaminated samples. Proteobacteria abundance was inhibited with oil pollution, while Actinomycetes abundance was enhanced. Some indigenous hydrocarbon-degrading bactera were enriched by oil pollution, such as Bacillus, Actinomarinales norank, Balneolaceae uncultured, Marinobacter, and Pseudomonas. Furthermore, Rokubacteria, Nitrospirae, and Entotheonellaeota were significant differences in the contaminated group. There were 16 genera with significant differences in the polluted group, such as Woeseia, Pelagibius, Pontibacillus, IS_44, Aliifodinibius, while Halothiobacillus, Algoriphagus, Novosphingobium, etc. had significant differences in the uncontaminated group. Redundancy analysis demonstrated that the responses of the microorganisms to the evaluated environmental factors were different, and TC was the most important driver of microbial community variation. Moreover, TOC was the largest contributor to operational taxonomic unit (OTU) and Chao index variations. Our results provide a theoretical basis for the enhancement of microbial activity in oil-contaminated soil, which might improve bioremediation efficacy.


Subject(s)
Petroleum , Soil Pollutants , Bacteria , Biodegradation, Environmental , Carbon/analysis , Hydrocarbons , Petroleum/analysis , Soil/chemistry , Soil Microbiology , Soil Pollutants/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...