Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Sci (Weinh) ; 10(2): e2202448, 2023 01.
Article in English | MEDLINE | ID: mdl-36453576

ABSTRACT

The guanine nucleotide exchange factor (GEF) SOS1 catalyzes the exchange of GDP for GTP on RAS. However, regulation of the GEF activity remains elusive. Here, the authors report that PPDPF functions as an important regulator of SOS1. The expression of PPDPF is significantly increased in pancreatic ductal adenocarcinoma (PDAC), associated with poor prognosis and recurrence of PDAC patients. Overexpression of PPDPF promotes PDAC cell growth in vitro and in vivo, while PPDPF knockout exerts opposite effects. Pancreatic-specific deletion of PPDPF profoundly inhibits tumor development in KRASG12D -driven genetic mouse models of PDAC. PPDPF can bind GTP and transfer GTP to SOS1. Mutations of the GTP-binding sites severely impair the tumor-promoting effect of PPDPF. Consistently, mutations of the critical amino acids mediating SOS1-PPDPF interaction significantly impair the GEF activity of SOS1. Therefore, this study demonstrates a novel model of KRAS activation via PPDPF-SOS1 axis, and provides a promising therapeutic target for PDAC.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Animals , Mice , Carcinoma, Pancreatic Ductal/genetics , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/metabolism , Guanosine Triphosphate , Intracellular Signaling Peptides and Proteins , Pancreatic Neoplasms/genetics , Proto-Oncogene Proteins p21(ras)/genetics , SOS1 Protein , Pancreatic Neoplasms
2.
Cancer Res ; 78(10): 2536-2549, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29483096

ABSTRACT

Two isoforms of human Polycomb-like protein 3 (hPCL3) have been reported as components of the nuclear Polycomb repressive complex 2 (PRC2), with the short isoform (hPCL3s) showing a dominant cytoplasmic localization. The function of cytoplasmic hPCL3s has, however, not been addressed. In this study, we report that hPCL3s is upregulated in clinical hepatocellular carcinoma (HCC) samples and its expression correlated with HCC clinical features. hPCL3s positively regulated the migration, invasion, and metastasis of HCC cells. hPCL3s interacted with components of the cytoplasmic ß-catenin destruction complex, inhibited ß-catenin degradation, and activated ß-catenin/T-cell factor signaling. Downstream of the ß-catenin cascade, IL6 mediated the motility-promoting functions of hPCL3s. Forced expression of hPCL3s in the liver of a HCC mouse model promoted tumorigenesis and metastasis. Taken together, these data show that hPCL3s promotes the metastasis of HCC by activating the ß-catenin/IL6 pathway.Significance: hPCL3s has an oncogenic role in hepatocellular carcinoma by activating the ß-catenin/IL6 signaling axis to promote metastasis. Cancer Res; 78(10); 2536-49. ©2018 AACR.


Subject(s)
Carcinoma, Hepatocellular/pathology , Interleukin-6/metabolism , Liver Neoplasms/pathology , Nuclear Proteins/metabolism , beta Catenin/metabolism , Animals , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , DNA-Binding Proteins , Gene Expression Regulation, Neoplastic/genetics , HEK293 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Nude , Neoplasm Invasiveness/genetics , Nuclear Proteins/genetics , Protein Isoforms/genetics , Protein Isoforms/metabolism , Transcription Factors , Wnt Signaling Pathway/genetics , Xenograft Model Antitumor Assays
3.
J Exp Med ; 215(1): 177-195, 2018 01 02.
Article in English | MEDLINE | ID: mdl-29237705

ABSTRACT

Although cilia loss and cell transformation are frequently observed in the early stage of tumorigenesis, the roles of cilia in cell transformation are unknown. In this study, disrupted ciliogenesis was observed in cancer cells and pancreatic cancer tissues, which facilitated oncogene-induced transformation of normal pancreatic cells (HPDE6C7) and NIH3T3 cells through activating the mevalonate (MVA) pathway. Disruption of ciliogenesis up-regulated MVA enzymes through ß catenin-T cell factor (TCF) signaling, which synchronized with sterol regulatory element binding transcription factor 2 (SREBP2), and the regulation of MVA by ß-catenin-TCF signaling was recapitulated in a mouse model of pancreatic ductal adenocarcinoma (PDAC) and human PDAC samples. Moreover, disruption of ciliogenesis by depleting Tg737 dramatically promoted tumorigenesis in the PDAC mouse model, driven by KrasG12D , which was inhibited by statin, an inhibitor of the MVA pathway. Collectively, this study emphasizes the crucial roles of cilia in governing the early steps of the transformation by activating the MVA pathway, suggesting that statin has therapeutic potential for pancreatic cancer treatment.


Subject(s)
Cell Transformation, Neoplastic/metabolism , Cilia/pathology , Metabolic Networks and Pathways , Mevalonic Acid/metabolism , Animals , Carcinoma, Pancreatic Ductal/etiology , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Cell Line, Tumor , Cell Transformation, Neoplastic/genetics , Gene Expression Profiling , Humans , Male , Mice , NIH 3T3 Cells , Oncogenes , Pancreatic Neoplasms/etiology , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Sterol Regulatory Element Binding Protein 2 , TCF Transcription Factors/metabolism , Pancreatic Neoplasms
SELECTION OF CITATIONS
SEARCH DETAIL
...