Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Talanta ; 276: 126291, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38776774

ABSTRACT

Developing a Surface-enhanced Raman spectroscopy (SERS) method with excellent detecting ability, good recyclability and analyzing multiple pollutants rapidly are critical for evaluation of water quality in emergency pollution affairs. While constructing a multifunctional substrate with these characteristics to realize the application of SERS in water quality monitoring remains a challenge. In this work, a reusable Au@R-Fe3O4/g-C3N4 SERS substrate is prepared by loading Au nanoparticles (Au NPs) on Fe3O4 nanorings (R-Fe3O4) and the formed Au@R-Fe3O4 is further combined with g-C3N4 nanosheets through a simple electrostatic assembly method. The Au@R-Fe3O4/g-C3N4 nanocomposite presents multifunction of magnetic enrichment, SERS signal enhancement, multiple pollutants analyzing, and photocatalytic activity, which achieves quantitative detection of rhodamine B (RhB), tetracycline hydrochloride (TC), and 4-chlorophenol (4-CP), with detection limits of 5.30 × 10-9, 7.50 × 10-8, 7.69 × 10-8 mol/L, respectively. Furthermore, the recyclable detection capability of Au@R-Fe3O4/g-C3N4 for multi components is demonstrated by the strong SERS signal after 9 cycles of "detection-degradation" processes. Combined with good uniformity and stability, this SERS method based on Au@R-Fe3O4/g-C3N4 substrate provides a new strategy for the multi-pollutants detection and degradation in water environment.

2.
Mikrochim Acta ; 189(5): 197, 2022 04 22.
Article in English | MEDLINE | ID: mdl-35459974

ABSTRACT

Chlorpyrifos is one of the most widely used organophosphate insecticides in agricultural production. Nevertheless, the residues of chlorpyrifos in agricultural by-product seriously threaten human health. Thus, the ultrasensitive detection of chlorpyrifos residues in agri-food products is of great demand. Herein, an AuNP/HNT-assembled disposable paper SERS substrate was prepared by an electrostatic self-assembly method to detect chlorpyrifos residues. The AuNP/HNT paper substrate exhibited high SERS activity, good reproducibility, and long-term stability, which was successfully used for quantitative detection of chlorpyrifos; the detection limit reached 7.9 × 10-9 M. For spiked apple samples the calculated recovery was 87.9% with a RSD value of 6.1%. The excellent detection ability of AuNP/HNT paper-based SERS substrate indicated that it will play an important role in pesticide detection in the future. AuNP/HNT assembled disposable paper SERS substrate was prepared by an electrostatic self-assembly method to detect chlorpyrifos residues in fruits.


Subject(s)
Chlorpyrifos , Metal Nanoparticles , Nanotubes , Chlorpyrifos/analysis , Clay , Fruit/chemistry , Gold/chemistry , Humans , Metal Nanoparticles/chemistry , Nanotubes/chemistry , Reproducibility of Results , Spectrum Analysis, Raman/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...