Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Front Microbiol ; 15: 1382665, 2024.
Article in English | MEDLINE | ID: mdl-38725688

ABSTRACT

Background: The clinical challenge of differentiating suspected tuberculosis with positive T-SPOT.TB results persist. This study aims to investigate the utility of the Systemic Immune-Inflammation Index (SII), Fibrinogen, and T-SPOT.TB in distinguishing between active pulmonary tuberculosis (PTB) and non-tuberculous lung diseases. Methods: A retrospective analysis included 1,327 cases of active PTB with positive T-SPOT.TB results and 703 cases of non-tuberculous lung diseases from May 2016 to December 2020 at Meizhou People's Hospital. These were designated as the case group and the control group, respectively. The detection indicators of T-SPOT.TB: Early Secreted Antigenic Target 6 (ESAT-6), Culture Filtrate Protein 10 (CFP-10), as well as SII and Fibrinogen levels-were compared and analyzed for association and joint diagnostic value between the two groups. Results: The case group showed higher values of ESAT-6, CFP-10, SII, and Fibrinogen compared to the control group (all p < 0.001). In the case group, SII and Fibrinogen did not correlate with ESAT-6 and CFP-10 (∣rs∣ all < 0.3) but were positively correlated with C-reactive protein (CRP; rs all > 0.3). SII and Fibrinogen values in smear-positive pulmonary tuberculosis were higher than in smear-negative cases (all p < 0.05). The optimal diagnostic thresholds for ESAT-6, CFP-10, SII, and Fibrinogen in differentiating between active PTB and non-tuberculous lung diseases were 21.50 SFCs/106 PBMC, 22.50 SFCs/106 PBMC, 2128.32, and 5.02 g/L, respectively. Regression logistic analysis showed that ESAT-6 < 21.5 (OR: 1.637, 95% CI: 1.311-2.043, p < 0.001), CFP-10 < 22.5 (OR: 3.918, 95% CI: 3.138-4.892, p = 0.025), SII < 2128.32 (OR: 0.763, 95% CI: 0.603-0.967, p < 0.001), and FIB < 5.02 (OR: 2.287, 95% CI: 1.865-2.806, p < 0.001) were independent risk factors for active PTB. The specificity for ESAT-6 + CFP-10, ESAT-6 + CFP-10 + SII, ESAT-6 + CFP-10 + FIB, and ESAT-6 + CFP-10 + SII + FIB was 82.5%, 83.2%, 95.8%, and 80.1%, respectively, while sensitivity was 52.6%, 53.0%, 55.8%, and 44.7%, and positive predictive values were 85.0%, 85.6%, 84.1%, and 89.6%, respectively. Conclusion: SII and Fibrinogen are positively correlated with the degree of tuberculosis inflammation and the bacterial load of Mycobacterium tuberculosis. The combined detection of SII, Fibrinogen, and T-SPOT.TB is significant in distinguishing between active PTB with positive T-SPOT.TB results and non-tuberculous lung diseases.

2.
Adv Healthc Mater ; 12(1): e2202207, 2023 01.
Article in English | MEDLINE | ID: mdl-36300640

ABSTRACT

As the development of new antibiotics lags far behind the emergence of drug-resistant bacteria, alternative strategies to resolve this dilemma are urgently required. Antibody-drug conjugate is a promising therapeutic platform to delivering cytotoxic payloads precisely to target cells for efficient disease treatment. Antibody-antimicrobial conjugates (AACs) have recently attracted considerable interest from researchers as they can target bacteria in the target sites and improve the effectiveness of drugs (i.e., reduced drug dosage and adverse effects), abating the upsurge of antimicrobial resistance. In this review, the selection and progress of three essential blocks that compose the AACs: antibodies, antimicrobial payloads, and linkers are discussed. The commonly used conjugation strategies and the latest applications of AACs in recent years are also summarized. The challenges and opportunities of this booming technology are also discussed at the end of this review.


Subject(s)
Antineoplastic Agents , Immunoconjugates , Immunoconjugates/adverse effects , Antineoplastic Agents/pharmacology , Drug Resistance, Microbial , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacteria
3.
J Zhejiang Univ Sci B ; 23(11): 881-898, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36379609

ABSTRACT

Infectious diseases cause great economic loss and individual and even social anguish. Existing detection methods lack sensitivity and specificity, have a poor turnaround time, and are dependent on expensive equipment. In recent years, the clustered regularly interspaced short palindromic repeats (CRISPR)|-CRISPR-associated protein (Cas) system has been widely used in the detection of pathogens that cause infectious diseases owing to its high specificity, sensitivity, and speed, and good accessibility. In this review, we discuss the discovery and development of the CRISPR-Cas system, summarize related analysis and interpretation methods, and discuss the existing applications of CRISPR-based detection of infectious pathogens using Cas proteins. We conclude the challenges and prospects of the CRISPR-Cas system in the detection of pathogens.


Subject(s)
CRISPR-Cas Systems , Communicable Diseases , Humans , Gene Editing/methods
4.
Int J Biol Sci ; 17(14): 4073-4091, 2021.
Article in English | MEDLINE | ID: mdl-34671221

ABSTRACT

Respiratory syncytial virus (RSV) is one of the most important viral pathogens causing respiratory tract infection in infants, the elderly and people with poor immune function, which causes a huge disease burden worldwide every year. It has been more than 60 years since RSV was discovered, and the palivizumab monoclonal antibody, the only approved specific treatment, is limited to use for passive immunoprophylaxis in high-risk infants; no other intervention has been approved to date. However, in the past decade, substantial progress has been made in characterizing the structure and function of RSV components, their interactions with host surface molecules, and the host innate and adaptive immune response to infection. In addition, basic and important findings have also piqued widespread interest among researchers and pharmaceutical companies searching for effective interventions for RSV infection. A large number of promising monoclonal antibodies and inhibitors have been screened, and new vaccine candidates have been designed for clinical evaluation. In this review, we first briefly introduce the structural composition, host cell surface receptors and life cycle of RSV virions. Then, we discuss the latest findings related to the pathogenesis of RSV. We also focus on the latest clinical progress in the prevention and treatment of RSV infection through the development of monoclonal antibodies, vaccines and small-molecule inhibitors. Finally, we look forward to the prospects and challenges of future RSV research and clinical intervention.


Subject(s)
Antiviral Agents/therapeutic use , Respiratory Syncytial Virus Infections/drug therapy , Respiratory Syncytial Virus, Human/drug effects , Respiratory Syncytial Virus, Human/pathogenicity , Genome, Viral , Humans , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Virus, Human/genetics , Respiratory Syncytial Virus, Human/immunology , Viral Vaccines/therapeutic use
5.
ACS Infect Dis ; 7(6): 1369-1388, 2021 06 11.
Article in English | MEDLINE | ID: mdl-33296169

ABSTRACT

The SARS-CoV-2 outbreak that emerged at the end of 2019 has affected more than 58 million people with more than 1.38 million deaths and has had an incalculable impact on the world . Extensive prevention and treatment measures have been implemented since the pandemic. In this Review, we summarize current understanding on the source, transmission characteristics, and pathogenic mechanism of SARS-CoV-2. We also detail the recent development of diagnostic methods and potential treatment strategies of COVID-19 with focus on the ongoing clinical trials of antibodies, vaccines, and inhibitors for combating the emerging coronavirus.


Subject(s)
COVID-19 , Vaccines , Humans , Pandemics , SARS-CoV-2
6.
ACS Cent Sci ; 6(11): 2031-2045, 2020 Nov 25.
Article in English | MEDLINE | ID: mdl-33274280

ABSTRACT

Gram-negative bacteria cannot be easily eradicated by antibiotics and are a major source of recalcitrant infections of indwelling medical devices. Among various device-associated infections, intravascular catheter infection is a leading cause of mortality. Prior approaches to surface modification, such as antibiotics impregnation, hydrophilization, unstructured NO-releasing, etc., have failed to achieve adequate infection-resistant coatings. We report a precision-structured diblock copolymer brush (H(N)-b-S) composed of a surface antifouling block of poly(sulfobetaine methacrylate) (S) and a subsurface bactericidal block (H(N)) of nitric-oxide-emitting functionalized poly(hydroxyethyl methacrylate) (H) covalently grafted from the inner and outer surfaces of a polyurethane catheter. The block copolymer architecture of the coating is important for achieving good broad-spectrum anti-biofilm activity with good biocompatibility and low fouling. The coating procedure is scalable to clinically useful catheter lengths. Only the block copolymer brush coating ((H(N)-b-S)) shows unprecedented, above 99.99%, in vitro biofilm inhibition of Gram-positive and Gram-negative bacteria, 100-fold better than previous coatings. It has negligible toxicity toward mammalian cells and excellent blood compatibility. In a murine subcutaneous infection model, it achieves >99.99% biofilm reduction of Gram-positive and Gram-negative bacteria compared with <90% for silver catheter, while in a porcine central venous catheter infection model, it achieves >99.99% reduction of MRSA with 5-day implantation. This precision coating is readily applicable for long-term biofilm-resistant and blood-compatible copolymer coatings covalently grafted from a wide range of medical devices.

7.
Research (Wash D C) ; 2020: 2016201, 2020.
Article in English | MEDLINE | ID: mdl-33083786

ABSTRACT

The emerging antimicrobial resistance (AMR) poses serious threats to the global public health. Conventional antibiotics have been eclipsed in combating with drug-resistant bacteria. Moreover, the developing and deploying of novel antimicrobial drugs have trudged, as few new antibiotics are being developed over time and even fewer of them can hit the market. Alternative therapeutic strategies to resolve the AMR crisis are urgently required. Pathogen-oriented therapy (POT) springs up as a promising approach in circumventing antibiotic resistance. The tactic underling POT is applying antibacterial compounds or materials directly to infected regions to treat specific bacteria species or strains with goals of improving the drug efficacy and reducing nontargeting and the development of drug resistance. This review exemplifies recent trends in the development of POTs for circumventing AMR, including the adoption of antibiotic-antibiotic conjugates, antimicrobial peptides, therapeutic monoclonal antibodies, nanotechnologies, CRISPR-Cas systems, and microbiota modulations. Employing these alternative approaches alone or in combination shows promising advantages for addressing the growing clinical embarrassment of antibiotics in fighting drug-resistant bacteria.

8.
Cell ; 177(6): 1553-1565.e16, 2019 05 30.
Article in English | MEDLINE | ID: mdl-31104841

ABSTRACT

Enterovirus B (EV-B), a major proportion of the genus Enterovirus in the family Picornaviridae, is the causative agent of severe human infectious diseases. Although cellular receptors for coxsackievirus B in EV-B have been identified, receptors mediating virus entry, especially the uncoating process of echovirus and other EV-B remain obscure. Here, we found that human neonatal Fc receptor (FcRn) is the uncoating receptor for major EV-B. FcRn binds to the virus particles in the "canyon" through its FCGRT subunit. By obtaining multiple cryo-electron microscopy structures at different stages of virus entry at atomic or near-atomic resolution, we deciphered the underlying mechanisms of enterovirus attachment and uncoating. These structures revealed that different from the attachment receptor CD55, binding of FcRn to the virions induces efficient release of "pocket factor" under acidic conditions and initiates the conformational changes in viral particle, providing a structural basis for understanding the mechanisms of enterovirus entry.


Subject(s)
Enterovirus B, Human/metabolism , Histocompatibility Antigens Class I/metabolism , Histocompatibility Antigens Class I/ultrastructure , Receptors, Fc/metabolism , Receptors, Fc/ultrastructure , Capsid/metabolism , Cryoelectron Microscopy , Enterovirus , Enterovirus B, Human/pathogenicity , Enterovirus Infections/metabolism , Histocompatibility Antigens Class I/physiology , Humans , Models, Molecular , Phylogeny , Receptors, Fc/physiology , Virion , Virus Internalization
9.
J Mol Biol ; 430(7): 948-962, 2018 03 30.
Article in English | MEDLINE | ID: mdl-29454707

ABSTRACT

Recently, Zika virus (ZIKV) emerged as a global public health concern and is distinct from other flaviviruses in many aspects, for example, causing transplacental infection, fetal abnormalities and vector-independent transmission through body fluids in humans. The capsid (C) protein is a multifunctional protein, since it binds to viral RNA in the process of nucleocapsid assembly and plays important roles in virus infection processes by interacting with cellular proteins, modulating cellular metabolism, apoptosis and immune response. Here we solved the crystal structure of ZIKV C protein at a resolution of 1.9Å. The ZIKV C protein structure contains four α helices with a long pre-α1 loop and forms dimers. The unique long pre-α1 loop in ZIKV C contributes to the tighter association of dimeric assembly and renders a divergent hydrophobic feature at the lipid bilayer interface in comparison with the known C structures of West Nile and dengue viruses. We reported the interaction between the ZIKV C protein and lipid droplets through confocal microscopy analysis. Substitutions of key amino acids in the pre-α1 loop of ZIKV C disrupted the interaction with lipid droplets, indicating that the loop is critical for membrane association. We also recognized that ZIKV C protein possesses broad binding capability to different nucleotide types, including single-stranded and double-stranded RNAs or DNAs. Furthermore, the highly positively charged interface, mainly formed by α4 helix, is proposed to be responsible for nucleotide binding. These findings will greatly enhance our understanding of ZIKV C protein, providing information for anti-ZIKV drug design targeting the C protein.


Subject(s)
Capsid Proteins/chemistry , Models, Molecular , Zika Virus , Capsid Proteins/metabolism , Crystallography, X-Ray , DNA, Viral/metabolism , Hydrophobic and Hydrophilic Interactions , Lipid Droplets/metabolism , Protein Conformation , RNA, Viral/metabolism
10.
Sheng Wu Gong Cheng Xue Bao ; 33(4): 672-682, 2017 Apr 25.
Article in Chinese | MEDLINE | ID: mdl-28920400

ABSTRACT

To improve collagen production by recombinant Pichia pastoris, we applied Placket-Burman and Box-Behnken design to optimize the fermentation medium. Through Placket-Burman design, three variables in the medium (concentration of yeast extract, peptone and glycerol) were selected for having significant effect on cell dry weight. Through Box-Behnken design regression coefficients analysis, a secondary degree polynomial equation was established, and the optimum levels of the three variables were yeast extract 1.13%, peptone 1.61% and glycerol 0.86%. During the growth period, an average cell dry weight of 4.41 g/L was obtained after 12 h fermentation, increased by 26%. Through high density fermentation, the production of recombinant human collagen (Ⅲ) was up to 4.71 g/L in 22 L fermentor. The recombinant human collagen (Ⅲ) exhibited good results to repair acetic acid induced gastric ulcer in rats.


Subject(s)
Collagen Type III/biosynthesis , Fermentation , Pichia/metabolism , Animals , Bioreactors , Humans , Microorganisms, Genetically-Modified/metabolism , Mucous Membrane , Rats , Recombinant Proteins/biosynthesis , Stomach Ulcer/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...