Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Neuroscience Bulletin ; (6): 1481-1496, 2023.
Article in English | WPRIM (Western Pacific) | ID: wpr-1010614

ABSTRACT

The discovery of neuroglobin (Ngb), a brain- or neuron-specific member of the hemoglobin family, has revolutionized our understanding of brain oxygen metabolism. Currently, how Ngb plays such a role remains far from clear. Here, we report a novel mechanism by which Ngb might facilitate neuronal oxygenation upon hypoxia or anemia. We found that Ngb was present in, co-localized to, and co-migrated with mitochondria in the cell body and neurites of neurons. Hypoxia induced a sudden and prominent migration of Ngb towards the cytoplasmic membrane (CM) or cell surface in living neurons, and this was accompanied by the mitochondria. In vivo, hypotonic and anemic hypoxia induced a reversible Ngb migration toward the CM in cerebral cortical neurons in rat brains but did not alter the expression level of Ngb or its cytoplasm/mitochondria ratio. Knock-down of Ngb by RNA interference significantly diminished respiratory succinate dehydrogenase (SDH) and ATPase activity in neuronal N2a cells. Over-expression of Ngb enhanced SDH activity in N2a cells upon hypoxia. Mutation of Ngb at its oxygen-binding site (His64) significantly increased SDH activity and reduced ATPase activity in N2a cells. Taken together, Ngb was physically and functionally linked to mitochondria. In response to an insufficient oxygen supply, Ngb migrated towards the source of oxygen to facilitate neuronal oxygenation. This novel mechanism of neuronal respiration provides new insights into the understanding and treatment of neurological diseases such as stroke and Alzheimer's disease and diseases that cause hypoxia in the brain such as anemia.


Subject(s)
Rats , Animals , Neuroglobin/metabolism , Globins/metabolism , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Hypoxia/metabolism , Brain/metabolism , Oxygen , Anemia/metabolism , Adenosine Triphosphatases/metabolism
2.
Acta Physiologica Sinica ; (6): 8-12, 2007.
Article in English | WPRIM (Western Pacific) | ID: wpr-258695

ABSTRACT

This paper was aimed to investigate the effects of ATP-sensitive potassium channels on the proliferation and differentiation of rat preadipocytes. We examined the expression of sulphonylurea receptor 2 (SUR2) mRNA in preadipocytes and adipocytes obtained by inducing for 5 d and the effects of the inhibitor (glibenclamide) and opener (diazoxide) of ATP-sensitive potassium channels on the expression of SUR2 mRNA in preadipocytes by real-time PCR. Preadipocyte proliferation and cell cycle were measured by MTT spectrophotometry and flow cytometer. The content of intracellular lipid was measured by oil red O staining, cell diameter was determined by Image-Pro Plus 5.0 software and the expression of peroxisome proliferator-activated receptor-gamma (PPAR-gamma) mRNA was estimated by RT-PCR. SUR2 mRNA was expressed in both preadipocytes and adipocytes obtained by inducing for 5 d, and the expression in adipocytes was obviously higher than that in preadipocytes. Glibenclamide inhibited the expression of SUR2 mRNA in preadipocyte, promoted preadipocyte proliferation in a dose-dependent manner, increased the cell percentages in G(2)/M + S phase, increased lipid content, augmented adipocyte diameter, and promoted the expression of PPAR-gamma mRNA. But the actions of diazoxide were contrary to those of glibenclamide. These results suggest that ATP-sensitive potassium channels regulate the proliferation and differentiation of preadipocytes, and PPAR-gamma is probably involved in the effect of ATP-sensitive potassium channels.


Subject(s)
Animals , Male , Rats , ATP-Binding Cassette Transporters , Genetics , Metabolism , Adipocytes , Cell Biology , Cell Differentiation , Physiology , Cell Proliferation , Cells, Cultured , KATP Channels , Physiology , Obesity , Pathology , PPAR gamma , Metabolism , Potassium Channels, Inwardly Rectifying , Genetics , Metabolism , RNA, Messenger , Genetics , Metabolism , Rats, Sprague-Dawley , Receptors, Drug , Genetics , Metabolism , Sulfonylurea Receptors
3.
Acta Physiologica Sinica ; (6): 725-730, 2005.
Article in English | WPRIM (Western Pacific) | ID: wpr-265503

ABSTRACT

To investigate the role of histamine in airway remodeling, 50 healthy guinea pigs were divided into 5 groups: control group: nebulized inhalation of distilled water for 8 weeks; asthma model group: nebulized inhalation of ovalbumin (OVA) for 8 weeks after sensitization; continued asthma model group: nebulized inhalation of OVA for 14 weeks after sensitization; histamine group: nebulized inhalation of OVA for 14 weeks after sensitization and histamine was added in the last 6 weeks; antagonist group: nebulized inhalation of OVA for 14 weeks after sensitization and histamine receptor antagonists were added in the last 6 weeks. For each group, the concentration of histamine, sodium ion (Na(+)), chlorine ion (Cl(-)), arterial partial pressure of oxygen (PaO2), arterial partial pressure of carbon dioxide (PaCO2), pH, actual bicarbonate (AB), standard bicarbonate (SB) in serum, and thickness of airway mucosa, base membrane and smooth muscle were measured and compared with each other. The results showed that: (1) the concentration of histamine in serum and the thickness of airway increased, the following order was, the control group, the asthma model group, the continued asthma model group and histamine group (P<0.01); and the concentration of histamine in serum and the thickness of airway of antagonist group was lower than that of the continued asthma model group (P<0.05, 0.01). (2) PaO2 of the asthma model group was lower than that of the normal control group (P<0.01); PaO2, pH, AB, SB decreased, the following order was, the asthma model group, the continued asthma model group and the histamine group (P<0.01); and PaO2, pH, AB, SB of the antagonist group was higher than that of the continued asthma model group (P<0.01); but for PaCO2, the order was converse (P<0.01); For the concentration of Na(+) and Cl(-) in serum, there was no difference among these groups. It is concluded that: (1) Histamine is one of the mediators in the airway remodeling of asthma. (2) Histamine receptor antagonists may play a role in preventing and treating airway remodeling. (3) There is a negative correlation between the PaO2, pH and the wall thickness of the airway (P<0.01), while a positive correlation between the PaCO2, anion gap (AG) and the wall thickness of the airway (P<0.01).


Subject(s)
Animals , Male , Airway Remodeling , Physiology , Asthma , Guinea Pigs , Histamine , Physiology , Histamine Antagonists , Pharmacology , Ovalbumin , Random Allocation
SELECTION OF CITATIONS
SEARCH DETAIL
...