Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(13): e2321606121, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38513106

ABSTRACT

Eukaryotic cells form condensates to sense and adapt to their environment [S. F. Banani, H. O. Lee, A. A. Hyman, M. K. Rosen, Nat. Rev. Mol. Cell Biol. 18, 285-298 (2017), H. Yoo, C. Triandafillou, D. A. Drummond, J. Biol. Chem. 294, 7151-7159 (2019)]. Poly(A)-binding protein (Pab1), a canonical stress granule marker, condenses upon heat shock or starvation, promoting adaptation [J. A. Riback et al., Cell 168, 1028-1040.e19 (2017)]. The molecular basis of condensation has remained elusive due to a dearth of techniques to probe structure directly in condensates. We apply hydrogen-deuterium exchange/mass spectrometry to investigate the mechanism of Pab1's condensation. Pab1's four RNA recognition motifs (RRMs) undergo different levels of partial unfolding upon condensation, and the changes are similar for thermal and pH stresses. Although structural heterogeneity is observed, the ability of MS to describe populations allows us to identify which regions contribute to the condensate's interaction network. Our data yield a picture of Pab1's stress-triggered condensation, which we term sequential activation (Fig. 1A), wherein each RRM becomes activated at a temperature where it partially unfolds and associates with other likewise activated RRMs to form the condensate. Subsequent association is dictated more by the underlying free energy surface than specific interactions, an effect we refer to as thermodynamic specificity. Our study represents an advance for elucidating the interactions that drive condensation. Furthermore, our findings demonstrate how condensation can use thermodynamic specificity to perform an acute response to multiple stresses, a potentially general mechanism for stress-responsive proteins.


Subject(s)
Heat-Shock Proteins , Poly(A)-Binding Proteins , Poly(A)-Binding Proteins/genetics , Temperature , Heat-Shock Proteins/metabolism , Thermodynamics , Heat-Shock Response , Deuterium Exchange Measurement/methods
2.
Chem Biomed Imaging ; 1(9): 817-830, 2023 Dec 25.
Article in English | MEDLINE | ID: mdl-38155726

ABSTRACT

Fluorescence nanoscopy has become increasingly powerful for biomedical research, but it has historically afforded a small field-of-view (FOV) of around 50 µm × 50 µm at once and more recently up to ∼200 µm × 200 µm. Efforts to further increase the FOV in fluorescence nanoscopy have thus far relied on the use of fabricated waveguide substrates, adding cost and sample constraints to the applications. Here we report PRism-Illumination and Microfluidics-Enhanced DNA-PAINT (PRIME-PAINT) for multiplexed fluorescence nanoscopy across millimeter-scale FOVs. Built upon the well-established prism-type total internal reflection microscopy, PRIME-PAINT achieves robust single-molecule localization with up to ∼520 µm × 520 µm single FOVs and 25-40 nm lateral resolutions. Through stitching, nanoscopic imaging over mm2 sample areas can be completed in as little as 40 min per target. An on-stage microfluidics chamber facilitates probe exchange for multiplexing and enhances image quality, particularly for formalin-fixed paraffin-embedded (FFPE) tissue sections. We demonstrate the utility of PRIME-PAINT by analyzing ∼106 caveolae structures in ∼1,000 cells and imaging entire pancreatic cancer lesions from patient tissue biopsies. By imaging from nanometers to millimeters with multiplexity and broad sample compatibility, PRIME-PAINT will be useful for building multiscale, Google-Earth-like views of biological systems.

3.
bioRxiv ; 2023 Jun 26.
Article in English | MEDLINE | ID: mdl-37425746

ABSTRACT

Myosin 10 (Myo10) is a vertebrate-specific motor protein well known for its role in filopodia formation. Although Myo10-driven filopodial dynamics have been characterized, there is no information about the numbers of Myo10 in filopodia. To better understand molecular stoichiometries and packing restraints in filopodia, we measured Myo10 abundance in these structures. Here we combined SDS-PAGE analysis with epifluorescence microscopy to quantitate HaloTag-labeled Myo10 in U2OS cells. About 6% of total intracellular Myo10 localizes to filopodia, where it tends to be enriched at opposite ends of the cell. Hundreds of Myo10 are found in a typical filopodium, and their distribution across filopodia is log-normal. Some filopodial tips even contain more Myo10 than accessible binding sites on the actin filament bundle. Our estimates of Myo10 molecules in filopodia provide insight into the physics of packing Myo10, its cargo, and other filopodia-associated proteins in narrow membrane deformations in addition to the numbers of Myo10 required for filopodia initiation. Our protocol provides a framework for future work analyzing Myo10 abundance and distribution upon perturbation.

4.
ACS Nano ; 15(9): 15285-15293, 2021 09 28.
Article in English | MEDLINE | ID: mdl-34472331

ABSTRACT

Fluorophores are powerful tools for interrogating biological systems. Carbon nanotubes (CNTs) have long been attractive materials for biological imaging due to their near-infrared excitation and bright, tunable optical properties. The difficulty in synthesizing and functionalizing these materials with precision, however, has hampered progress in this area. Carbon nanohoops, which are macrocyclic CNT substructures, are carbon nanostructures that possess ideal photophysical characteristics of nanomaterials, while maintaining the precise synthesis of small molecules. However, much work remains to advance the nanohoop class of fluorophores as biological imaging agents. Herein, we report an intracellular targeted nanohoop. This fluorescent nanostructure is noncytotoxic at concentrations up to 50 µM, and cellular uptake investigations indicate internalization through endocytic pathways. Additionally, we employ this nanohoop for two-photon fluorescence imaging, demonstrating a high two-photon absorption cross-section (65 GM) and photostability comparable to a commercial probe. This work further motivates continued investigations into carbon nanohoop photophysics and their biological imaging applications.


Subject(s)
Nanotubes, Carbon
5.
Nat Commun ; 11(1): 4846, 2020 Sep 21.
Article in English | MEDLINE | ID: mdl-32958801

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

6.
Nat Commun ; 11(1): 4339, 2020 08 28.
Article in English | MEDLINE | ID: mdl-32859909

ABSTRACT

DNA points accumulation for imaging in nanoscale topography (DNA-PAINT) facilitates multiplexing in superresolution microscopy but is practically limited by slow imaging speed. To address this issue, we propose the additions of ethylene carbonate (EC) to the imaging buffer, sequence repeats to the docking strand, and a spacer between the docking strand and the affinity agent. Collectively termed DNA-PAINT-ERS (E = EC, R = Repeating sequence, and S = Spacer), these strategies can be easily integrated into current DNA-PAINT workflows for both accelerated imaging speed and improved image quality through optimized DNA hybridization kinetics and efficiency. We demonstrate the general applicability of DNA-PAINT-ERS for fast, multiplexed superresolution imaging using previously validated oligonucleotide constructs with slight modifications.


Subject(s)
Cytological Techniques/methods , DNA/chemistry , Microscopy, Fluorescence/methods , Molecular Docking Simulation/methods , Cell Line , Humans , Image Processing, Computer-Assisted/methods , Oligonucleotides , Staining and Labeling/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...