Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters










Publication year range
2.
Physiol Mol Biol Plants ; 30(1): 137-152, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38435851

ABSTRACT

Autophagy, a conserved degradation and reuse process, plays a crucial role in plant cellular homeostasis during abiotic stress. Although numerous autophagy-related genes (ATGs) that regulate abiotic stress have been identified, few functional studies have shown how they confer tolerance to copper (Cu) stress. Here, we cloned a novel Vitis vinifera ATG6 gene (VvATG6) which was induced by 0.5 and 10 mM Cu stress based on transcriptomic data, and transgenic Arabidopsis thaliana, tobacco (Nicotiana tabacum), and grape calli were successfully obtained through Agrobacterium-mediated genetic transformation. The overexpression of VvATG6 enhanced the tolerance of transgenic lines to Cu. After Cu treatment, the lines that overexpressed VvATG6 grew better and increased their production of biomass compared with the wild-type. These changes were accompanied by higher activities of antioxidant enzymes and a lower accumulation of deleterious malondialdehyde and hydrogen peroxide in the transgenic plants. The activities of superoxide dismutase, peroxidase, and catalase were enhanced owing to the elevation of corresponding antioxidant gene expression in the VvATG6 overexpression plants under Cu stress, thereby promoting the clearance of reactive oxygen species (ROS). Simultaneously, there was a decrease in the levels of expression of RbohB and RbohC that are involved in ROS synthesis in transgenic plants under Cu stress. Thus, the accelerated removal of ROS and the inhibition of its synthesis led to a balanced ROS homeostasis environment, which alleviated the damage from Cu. This could benefit from the upregulation of other ATGs that are necessary for the production of autophagosomes under Cu stress. To our knowledge, this study is the first to demonstrate the protective role of VvATG6 in the Cu tolerance of plants. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-024-01415-y.

3.
Sci Rep ; 14(1): 2382, 2024 01 29.
Article in English | MEDLINE | ID: mdl-38287081

ABSTRACT

Grape quality is a key factor in determining wine quality, and it depends not only on management skills, but also on the geographic location of the producing area. In China, Shandong is the province with the largest wine production, and 'Cabernet Franc' is widely planted. This study evaluated the 'Cabernet Franc' fruit quality in relation to geographical conditions in five 'Cabernet Franc' producing districts of Shandong province, China, including Dezhou Aodeman Winery (DZ), Tai'an Zhongqingsongshi Winery (TA), Penglai Longhu Winery (PL), Rushan Taiyihu Winery (RS), and Rizhao Taiyangcheng Winery (RZ). At the time of veraison and maturity, fruit was harvested from five areas, and compared for cosmetic and internal fruit quality. The soluble sugar content in the Rizhao area was rich, and the weight and volume of single fruit were relatively large. The titratable acid of the berries in Tai'an area was high. RNA-seq analysis showed that the number of genes in the véraison stage was 19,571-20,750, and the number of genes in the mature stage was 19,176-20,735. The analysis found that areas with multiple high-quality characteristics tended to have more DEGs (differential expressed genes). And the DEGs in different areas were mainly distributed on chromosome 7, and at least on chromosome 15. DEGs in 5 areas were enriched on 855 GO terms and 116 KEGG pathways during berries development. Among them, it was found that the up/down-regulation of DEGs was related to the formation of berry quality, which helps to explain the impact of environment on grape quality components. In summary, this study is helpful to understand the influence of cultivation location on the quality of 'Cabernet Franc' in different production areas in Shandong province, and further provide a reference for the production of high-quality wine grapes and winemaking.


Subject(s)
Vitis , Wine , Fruit/metabolism , Vitis/metabolism , Wine/analysis , China
4.
Physiol Plant ; 175(5): e14005, 2023.
Article in English | MEDLINE | ID: mdl-37882275

ABSTRACT

Drought stress impedes viticultural plant growth and development by modifying various metabolic pathways. However, the regulatory network response underlying drought stress is not yet clear. In this study, the leaves and roots of "Shine Muscat" ("SM," Vitis labruscana × Vitis vinifera) and "Thompson Seedless" ("TS," V. vinifera L. cv.) were subjected to drought stress to study the regulatory network used by drought stress. Morphophysiological results showed that the malondialdehyde content after 28 days of drought stress increased more significantly in "TS" than "SM." Furthermore, the multiomics analysis studies showed that a total of 3036-6714 differentially expressed genes and 379-385 differentially abundant metabolites were identified in "SM" and "TS" grapevine cultivars under drought stress. Furthermore, the retained intron was the major form of differential alternative splicing event under drought stress. The photosynthesis pathway, antioxidant system, plant hormone signal transduction, and osmotic adjustment were the primary response systems in the two grapevine cultivars under drought stress. We have identified GRIK1, RFS2, and LKR/SDH as the hub genes in the coexpression network of drought stress. In addition, the difference in the accumulation of pheophorbide-a reveals different drought resistance mechanisms in the two grapevine cultivars. Our study explained the difference in drought response between cultivars and tissues and identified drought stress-responsive genes, which provides reference data for further understanding the regulatory network of drought tolerance in grapevine.


Subject(s)
Antioxidants , Vitis , Antioxidants/metabolism , Droughts , Plant Growth Regulators/metabolism , Photosynthesis , Plant Leaves/metabolism , Vitis/metabolism , Gene Expression Regulation, Plant
5.
Front Plant Sci ; 14: 1129114, 2023.
Article in English | MEDLINE | ID: mdl-37008472

ABSTRACT

Drought is a common and serious abiotic stress in viticulture, and it is urgent to select effective measures to alleviate it. The new plant growth regulator 5-aminolevulinic acid (ALA) has been utilized to alleviate abiotic stresses in agriculture in recent years, which provided a novel idea to mitigate drought stress in viticulture. The leaves of 'Shine Muscat' grapevine (Vitis vinifera L.) seedlings were treated with drought (Dro), drought plus 5-aminolevulinic acid (ALA, 50 mg/L) (Dro_ALA) and normal watering (Control) to clarify the regulatory network used by ALA to alleviate drought stress in grapevine. Physiological indicators showed that ALA could effectively reduce the accumulation of malondialdehyde (MDA) and increase the activities of peroxidase (POD) and superoxide dismutase (SOD) in grapevine leaves under drought stress. At the end of treatment (day 16), the MDA content in Dro_ALA was reduced by 27.63% compared with that in Dro, while the activities of POD and SOD reached 2.97- and 5.09-fold of those in Dro, respectively. Furthermore, ALA reduces abscisic acid by upregulating CYP707A1, thus, relieving the closure of stomata under drought. The chlorophyll metabolic pathway and photosynthetic system are the major pathways affected by ALA to alleviate drought. Changes in the genes of chlorophyll synthesis, including CHLH, CHLD, POR, and DVR; genes related to degradation, such as CLH, SGR, PPH and PAO; the RCA gene that is related to Rubisco; and the genes AGT1 and GDCSP related to photorespiration form the basis of these pathways. In addition, the antioxidant system and osmotic regulation play important roles that enable ALA to maintain cell homeostasis under drought. The reduction of glutathione, ascorbic acid and betaine after the application of ALA confirmed the alleviation of drought. In summary, this study revealed the mechanism of effects of drought stress on grapevine, and the alleviating effect of ALA, which provides a new concept to alleviate drought stress in grapevine and other plants.

6.
Environ Sci Pollut Res Int ; 30(25): 67621-67633, 2023 May.
Article in English | MEDLINE | ID: mdl-37118392

ABSTRACT

Phytoremediation of the eutrophic water bodies by using various macrophytes has long been considered effective and economical. However, the understanding of combining macrophytes to maximize efficacy in the restoration is still limited. In this study, three different life-form macrophytes were employed to explore the optimal plant combination of eutrophic water purification, including Pontederia cordata L. (E: emergent), Pistia stratiotes L. (F: floating), and Hydrilla verticillata (L. f.) Royle (S: submerged). The effects on water quality, removal of the excess nutrients (TN, NH3-N, NO3-N, and TP) in the water, along with the growth response and the nutrient accumulation of the macrophytes were investigated both individually and in combination. The phytoremediation of every single macrophyte was significantly improved by combined planting and increasing the diversity of the combination led to better enhancements. In general, the treatment with macrophytes in three life forms (EFS) not only resulted in the highest removal rates of the TN, NH3-N, NO3-N, and TP (40.89, 33.50, 46.81, and 43.55%, respectively) but also decreased the turbidity and increased the dissolved oxygen more effectively and efficiently. Furthermore, EFS mitigated the environmental stress of plants and promoted the accumulation of TN and TP in them, especially the emergent macrophyte P. cordata. The combinations with macrophyte in two life forms (EF, ES, and FS) also exhibited unique strengths: the removal efficacy of TN (39.25%) and TP (46.16%) in FS, and NO3-N in EF (48.54%) and ES (49.90%) were also at the forefront; the biomass and nutrient content of the submerged macrophyte H. verticillata in ES were the highest. Moreover, a strong correlation between the eutrophic factors and the plant physiological indexes was observed. These findings highlighted the role of combined planting in phytoremediation and provided a valuable reference for the development of ecological restoration for eutrophic ecosystems.


Subject(s)
Ecosystem , Water Purification , Biodegradation, Environmental , Biomass , Water Quality
7.
Front Plant Sci ; 14: 1102695, 2023.
Article in English | MEDLINE | ID: mdl-36844076

ABSTRACT

Introduction: Grape rootstocks play critical role in the development of the grape industry over the globe for their higher adaptability to various environments, and the evaluation of their genetic diversity among grape genotypes is necessary to the conservation and utility of genotypes. Methods: To analyze the genetic diversity of grape rootstocks for a better understanding multiple resistance traits, whole-genome re-sequencing of 77 common grape rootstock germplasms was conducted in the present study. Results: About 645 billion genome sequencing data were generated from the 77 grape rootstocks at an average depth of ~15.5×, based on which the phylogenic clusters were generated and the domestication of grapevine rootstocks was explored. The results indicated that the 77 rootstocks originated from five ancestral components. Through phylogenetic, principal components, and identity-by-descent (IBD) analyses, these 77 grape rootstocks were assembled into ten groups. It is noticed that the wild resources of V. amurensis and V. davidii, originating from China and being generally considered to have stronger resistance against biotic and abiotic stresses, were sub-divided from the other populations. Further analysis indicated that a high level of linkage disequilibrium was found among the 77 rootstock genotypes, and a total of 2,805,889 single nucleotide polymorphisms (SNPs) were excavated, GWAS analysis among the grape rootstocks located 631, 13, 9, 2, 810, and 44 SNP loci that were responsible to resistances to phylloxera, root-knot nematodes, salt, drought, cold and waterlogging traits. Discussion: This study generated a significant amount of genomic data from grape rootstocks, thus providing a theoretical basis for further research on the resistance mechanism of grape rootstocks and the breeding of resistant varieties. These findings also reveal that China originated V. amurensis and V. davidii could broaden the genetic background of grapevine rootstocks and be important germplasm used in breeding high stress-resistant grapevine rootstocks.

8.
Plant Sci ; 326: 111511, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36377142

ABSTRACT

5-Aminolevulinic acid (ALA), an essential biosynthetic precursor of tetrapyrrole compounds, promotes the anthocyanin accumulation in many plant species. However, the underlying mechanism of ALA-induced accumulation is not yet fully understood. In this study, we identified an important regulator of the anthocyanin accumulation, MdMYB110a, which plays an important role in the ALA-induced anthocyanin accumulation. MdMYB110a activated the expression of MdGSTF12 by binding to its promoter. Additionally, two interacting MdMYB110a proteins, MdWD40-280 and MdHsfB3a, were isolated and confirmed as positive regulators of the ALA-induced anthocyanin accumulation. Both MdWD40-280 and MdHsfB3a enhanced the ability of MdMYB110a to transcribe MdGSTF12. A yeast one-hybrid assay revealed that MdWD40-280 did not bind to most structural genes in the anthocyanin biosynthetic and transport pathways, thus promoting anthocyanin accumulation by MdWD40-280 to depend on MdMYB110a. However, MdHsfB3a could bind to both the MdDFR and MdANS promoters, thereby directly regulating anthocyanin biosynthesis. Collectively, these results provide new insight into the mechanism of ALA-induced anthocyanin accumulation.


Subject(s)
Malus , Malus/genetics , Malus/metabolism , Anthocyanins/metabolism , Gene Expression Regulation, Plant , Plant Proteins/metabolism , Aminolevulinic Acid/metabolism , Transcription Factors/metabolism
9.
Environ Pollut ; 307: 119561, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35659552

ABSTRACT

Improper application of copper-based fungicides has made copper stress critical in viticulture, necessitating the need to identify substances that can mitigate it. In this study, leaves of 'Shine Muscat' ('SM') grapevine seedlings were treated with CuSO4 solution (10 mM/L), CuSO4 + 5-aminolevulinic acid (ALA) (50 mg/L), and distilled water to explore the mitigation effect of ALA. Physiological assays demonstrated that ALA effectively reduced malondialdehyde accumulation and increased peroxidase and superoxide dismutase activities in grapevine leaves under copper stress. Copper ion absorption, transport pathways, chlorophyll metabolism pathways, photosynthetic system, and antioxidant pathways play key roles in ALA alleviated-copper stress. Moreover, expression changes in genes, such as CHLH, ALAD, RCA, and DHAR, play vital roles in these processes. Furthermore, abscisic acid reduction caused by NCED down-regulation and decreased naringenin, leucopelargonidin, and betaine contents confirmed the alleviating effect of ALA. Taken together, these results reveal how grapevine responds to copper stress and the alleviating effects of ALA, thus providing a novel means of alleviating copper stress in viticulture.


Subject(s)
Aminolevulinic Acid , Copper , Aminolevulinic Acid/metabolism , Aminolevulinic Acid/pharmacology , Antioxidants/metabolism , Copper/metabolism , Photosynthesis , Plant Leaves , Seedlings , Stress, Physiological
10.
Front Microbiol ; 13: 846504, 2022.
Article in English | MEDLINE | ID: mdl-35572700

ABSTRACT

Grapevine downy mildew is the most serious disease of grapevine cultivars that affects the rate of resistance/susceptibility to Plasmopara viticola. In this study, we used the susceptible cultivar "Zitian Seedless" and the resistant cultivar "Kober 5BB" as materials to determine the transcriptome differences and phenotypes of the leaves after inoculation with downy mildew. The differences in microstructures and molecular levels were compared and analyzed. Fluorescence staining and microscopic observations confirmed that hypersensitive cell death occurred around the stomata in "Kober 5BB" infected by downy mildew zoospores. Meanwhile, transcriptomic profiling indicated that there were 11,713 and 6,997 gene expression differences between the resistant and susceptible cultivars at 72 h after inoculation when compared to control (0 h), respectively. The differentially expressed genes of the two cultivars are significantly enriched in different pathways, including response to plant-pathogen interaction, mitogen-activated protein kinase (MAPK) signaling pathway, plant hormone signal transduction, phenylpropanoid, and flavonoid biosynthesis. Furthermore, the results of functional enrichment analysis showed that H2O2 metabolism, cell death, reactive oxygen response, and carbohydrate metabolism are also involved in the defense response of "Kober 5BB," wherein a total of 322 key genes have been identified. The protein interaction network showed that metacaspases (MCAs), vacuolar processing enzymes (VPEs), and Papain-like cysteine proteases (PLCPs) play an important role in the execution of hypersensitive responses (HR). In conclusion, we demonstrated that HR cell death is the key strategy in the process of grape defense against downy mildew, which may be mediated or activated by Caspase-like proteases.

11.
Environ Sci Pollut Res Int ; 29(41): 62272-62280, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35397727

ABSTRACT

It has been well documented that polycyclic aromatic hydrocarbon (PAHs) can be taken up from the environment by the plants and translocated into the shoots. However, the mechanisms underlying this process are poorly understood. Nelumbo nucifera L. (lotus) is a highly ornamental aquatic plant known to possess strong phytoremediation capability. In the present study, the association between phenanthrene (Phe) and nutrients, including nitrogen (N) and phosphorus (P), in lotus was investigated. Over 2 years, all eight lotus cultivars tested accumulated Phe to various degrees when grown in PAH-polluted sediment (0.46 mg/kg Phe). Cluster analysis showed N. nucifera 'Zhongguo Hong Beijing (ZHB)' was the one with the highest Phe levels in the leaves and petals in 2 years. The Phe concentrations in the tissues of 'ZHB' were 3.14 mg/kg and 1.63 mg/kg on average in the first and second year, respectively. Interestingly, 'ZHB' was also the cultivar with the lowest N and P levels considering 2 years and tissues. Hydroponic studies further revealed a negative association between the concentrations of Phe and those of N and P in the aerial tissues under 0.5 and 1.0 mg/L Phe treatments in 'ZHB'. Furthermore, the significant reductions of the roots number (72.6%), longest root length (75.8%), and petiolar height (34.6%) in 'ZHB' seedlings exposed to 1.0 mg/L Phe were observed, indicating that Phe retarded the growth of lotus. These results provide a new understanding of the accumulation of Phe in plants and the association with nutrients and enrich the basis of phytoremediation to the contaminated environment.


Subject(s)
Lotus , Nelumbo , Phenanthrenes , Beijing , Nutrients
13.
BMC Plant Biol ; 21(1): 499, 2021 Oct 30.
Article in English | MEDLINE | ID: mdl-34717550

ABSTRACT

BACKGROUND: Papain-like cysteine proteases (PLCPs), a large group of cysteine proteases, are structurally related to papain. The members belonging to PLCPs family contribute to plant immunity, senescence, and defense responses in plants. The PLCP gene family has been identified in Arabidopsis, rice, soybean, and cotton. However, no systematic analysis of PLCP genes has been undertaken in grapevine. Since Plasmopara viticola as a destructive pathogen could affect immunity of grapes in the field, we considered that the members belonged to PLCPs family could play a crucial role in defensive mechanisms or programmed cell death. We aimed to evaluate the role of PLCPs in 2 different varieties of grapevines and compared the changes of their expressions with the transcriptional data in response to P. viticola. RESULTS: In this study, 23 grapevine PLCP (VvPLCP) genes were identified by comprehensive bioinformatics analysis. Subsequently, the chromosomal localizations, gene structure, conserved domains, phylogenetic relationship, gene duplication, and cis-acting elements were analyzed. Numerous cis-acting elements related to plant development, hormone, and stress responses were identified in the promoter of the VvPLCP genes. Phylogenetic analysis grouped the VvPLCP genes into nine subgroups. The transcription of VvPLCP in different inoculation time points and varieties indicated that VvPLCP may have vital functions in grapevine defense against Plasmopara viticola. According to transcriptome data and qPCR analysis, we observed the increasing expression levels of VvRD21-1 at 72 h after inoculation in resistant variety, inferring that it was related to grape downy mildew resistance. Meanwhile, 3 genes including VvXBCP1, VvSAG12-1, and VvALP1 showed higher expression at 24 h after pathogen inoculation in the susceptible variety and might be related to the downy mildew phenotype. We nominated these four genes to function during hypersensitive response (HR) process, inferring that these genes could be associated with downy mildew resistance in grapes. CONCLUSIONS: Our results provide the reference for functional studies of PLCP gene family, and highlight its functions in grapevine defense against P. viticola. The results help us to better understand the complexity of the PLCP gene family in plant immunity and provide valuable information for future functional characterization of specific genes in grapevine.


Subject(s)
Disease Resistance/genetics , Disease Resistance/immunology , Plant Diseases/immunology , Plant Diseases/microbiology , Plant Immunity/genetics , Vitis/genetics , Vitis/microbiology , Crops, Agricultural/genetics , Crops, Agricultural/microbiology , Gene Expression Regulation, Plant , Genes, Plant
14.
Physiol Mol Biol Plants ; 27(7): 1423-1436, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34366587

ABSTRACT

Glycoside hydrolase (GH, EC 3.2.1) is a group of enzymes that hydrolyzes glycosidic bonds and play a role in the hydrolysis and synthesis of sugars in living organisms. Vitis vinifera is an important fruit crop and it harbors GH17 gene family however, their function in grapes has not been systematically investigated. In this study, a total of 870 GH17 genes were identified from 14 plant species and their structural domain, sequence alignment, phylogenetic tree, collinear analysis, with the expression profiles of VviGH17 gene family was performed. The promoter analysis of VviGH17 gene showed the presence of cis-acting elements, which are responsive to plant growth and development. In addition, elements for plant hormones were found that are triggered in response to abiotic/biological stress. Transcriptomic data led to the identification of several VviGH17 genes, which are associated with bud dormancy and in response to abiotic stress. Transcript analysis was carried out for some of the selected VviGH17 genes RT-qPCR. VviGH17-16 and VviGH17-30 genes were differentially expressed during bud dormancy, fruit development and different abiotic stresses. Moreover, VviGH17-37 and VviGH17-44 were differentially expressed at fruit development, in response to abiotic stress. In addition, subcellular localization predicts that the VviGH17-16, VviGH17-30, and VviGH17-37 genes were located in the cell membrane, while VviGH17-44 gene was located in the vacuole. In conclusion, our study led to the identification of several GH17s and their probable role in development and stress. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12298-021-01014-1.

15.
Environ Pollut ; 286: 117278, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-33964687

ABSTRACT

Copper stress is one of the most severe heavy metal stresses in plants. Grapevine has a relatively higher copper tolerance than other fruit crops. However, there are no reports regarding the tolerance mechanisms of the 'Shine Muscat' ('SM') grape to a low degree of excess copper stress (Low-ECS). Based on the physiological indicators and multi-omics (transcriptome, proteome, metabolome, and microRNAome) data, 8 h (h) after copper treatment was the most severe stress time point. Nonetheless, copper stress was alleviated 64 h after treatment. Cu ion transportation, photosynthesis pathway, antioxidant system, hormone metabolism, and autophagy were the primary response systems in 'SM' grapevine under Low-ECS. Numerous genes and proteins, such as HMA5, ABC transporters, PMM, GME, DHAR, MDHAR, ARGs, and ARPs, played essential roles in the 'SM' grapevine's response to Low-ECS. This work was carried out to gain insights into the multi-omics responses of 'SM' grapevine to Low-ECS. This study provides genetic and agronomic information that will guide better vinery management and breeding copper-resistant grape cultivars.


Subject(s)
Copper , Vitis , Copper/toxicity , Oman , Plant Breeding , Transcriptome
16.
Plant Biotechnol J ; 19(6): 1216-1239, 2021 06.
Article in English | MEDLINE | ID: mdl-33440072

ABSTRACT

In grape, MYBA1 and MYBA2 at the colour locus are the major genetic determinants of grape skin colour, and the mutation of two functional genes (VvMYBA1 and VvMYBA2) from these loci leads to white skin colour. This study aimed to elucidate the regulation of grape berry coloration by isolating and characterizing VvMYBA2w and VvMYBA2r alleles. The overexpression of VvMYBA2r up-regulated the expression of anthocyanin biosynthetic genes and resulted in higher anthocyanin accumulation in transgenic tobacco than wild-type (WT) plants, especially in flowers. However, the ectopic expression of VvMYBA2w inactivated the expression of anthocyanin biosynthetic genes and could not cause obvious phenotypic modulation in transgenic tobacco. Unlike in VvMYBA2r, CA dinucleotide deletion shortened the C-terminal transactivation region and disrupted the transcriptional activation activity of VvMYBA2w. The results indicated that VvMYBA2r positively regulated anthocyanin biosynthesis by forming the VvMYBA2r-VvMYCA1-VvWDR1 complex, and VvWDR1 enhanced anthocyanin accumulation by interacting with the VvMYBA2r-VvMYCA1 complex; however, R44 L substitution abolished the interaction of VvMYBA2w with VvMYCA1. Meanwhile, both R44 L substitution and CA dinucleotide deletion seriously affected the efficacy of VvMYBA2w to regulate anthocyanin biosynthesis, and the two non-synonymous mutations were additive in their effects. Investigation of the colour density and MYB haplotypes of 213 grape germplasms revealed that dark-skinned varieties tended to contain HapC-N and HapE2, whereas red-skinned varieties contained high frequencies of HapB and HapC-Rs. Regarding ploidy, the higher the number of functional alleles present in a variety, the darker was the skin colour. In summary, this study provides insight into the roles of VvMYBA2r and VvMYBA2w alleles and lays the foundation for the molecular breeding of grape varieties with different skin colour.


Subject(s)
Vitis , Alleles , Anthocyanins , DNA Shuffling , Fruit/genetics , Fruit/metabolism , Gene Expression Regulation, Plant/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Skin Pigmentation , Vitis/genetics , Vitis/metabolism
17.
BMC Plant Biol ; 20(1): 390, 2020 Aug 26.
Article in English | MEDLINE | ID: mdl-32842963

ABSTRACT

BACKGROUND: Bud dormancy is a strategic mechanism plants developed as an adaptation to unfavorable environments. The grapevine (Vitis vinifera) is one of the most ancient fruit vine species and vines are planted all over the world due to their great economic benefits. To better understand the molecular mechanisms underlying bud dormancy between adjacent months, the transcriptomes of 'Rosario Bianco' grape buds of 6 months and three nodes were analyzed using RNA-sequencing technology and pair-wise comparison. From November to April of the following year, pairwise comparisons were conducted between adjacent months. RESULTS: A total of 11,647 differentially expressed genes (DEGs) were obtained from five comparisons. According to the results of cluster analysis of the DEG profiles and the climatic status of the sampling period, the 6 months were divided into three key processes (November to January, January to March, and March to April). Pair-wise comparisons of DEG profiles of adjacent months and three main dormancy processes showed that the whole grapevine bud dormancy period was mainly regulated by the antioxidant system, secondary metabolism, cell cycle and division, cell wall metabolism, and carbohydrates metabolism. Additionally, several DEGs, such as VvGA2OX6 and VvSS3, showed temporally and spatially differential expression patterns, which normalized to a similar trend during or before April. CONCLUSION: Considering these results, the molecular mechanisms underlying bud dormancy in the grapevine can be hypothesized, which lays the foundation for further research.


Subject(s)
Flowers/genetics , Flowers/physiology , Plant Dormancy/genetics , Plant Proteins/genetics , Plant Proteins/physiology , Vitis/genetics , Vitis/metabolism , China , Gene Expression Profiling , Gene Expression Regulation, Plant , Seasons , Sequence Analysis, RNA , Transcriptome
18.
3 Biotech ; 10(7): 307, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32582504

ABSTRACT

Anthocyanins, a subclass of flavonoids, are synthesized at the cytoplasmic surface of the endoplasmic reticulum (ER), which then accumulate in vacuoles. Plant glutathione S-transferase (GST) genes are involved in anthocyanin transportation. Here, a total of 52, 42, 50, and 29 GST genes were identified from apple, pear, peach, and strawberry, respectively, through a comprehensive genome-wide survey. Based on phylogenetic analyses, the GST proteins of the four crops could be divided into the classes Phi, Tau, DHAR, TCHQD, and Lambda. The structure and chromosomal distribution of apple GST genes were further analyzed. The GST gene family expansion in apple likely occurred through tandem duplications, and purifying selection played a pivotal role in the evolution of GST genes. Synteny analysis showed strong microsynteny between apple and Arabidopsis/strawberry, but no microsynteny was detected between apple/strawberry/Arabidopsis and rice. Aminolevulinic acid (ALA), a key precursor of tetrapyrrole compounds, can significantly improve anthocyanin accumulation in fruits, Using RNA-seq and qRT-PCR analysis, we found that ALA treatment led to the differential expression of GST genes in apples. MdGSTF12 was strongly induced by ALA, suggesting that MdGSTF12 may play a role in ALA-induced anthocyanin accumulation. These results provide a detailed overview of GST genes in four Rosaceae species and indicate that GSTs are involved in ALA-induced anthocyanin accumulation.

19.
Physiol Mol Biol Plants ; 26(4): 617-637, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32255927

ABSTRACT

The fruit is the most important economical organ in the grape; accordingly, to investigate the grapevine genomic methylation landscape and examine its functional significance during fruit development, we generated whole genome DNA methylation maps for various developmental stages in the fruit of grapevine. In this study, thirteen DNA methylation-related genes and their expression profiles were identified and analyzed. The methylation levels for mC, mCG, mCHG, and mCHH contexts in 65 days after flowering (65DAF) fruit (véraison stage) were higher than those in 40DAF (green stage) and 90DAF (mature stage) fruits. Relative to methylation in the mC context, methylation levels in the mCHH context were higher than those of mCG and mCHG. The DNA methylation level in the ncRNA regions was significantly higher than that in exon, gene, intron, and mRNA regions. The differentially methylated regions (DMRs) and differentially methylated promoters (DMPs) in 65DAF_vs_40DAF were both higher than those in 90DAF_vs_65DAF and 90DAF_vs_40DAF. Most DMRs (or DMPs) were involved in metabolic processes and cell processes, binding, and catalytic activity. These results indicated that DNA methylation represses gene expression during grape fruit development, and it broadens our understanding of the landscape and function of DNA methylation in grapevine genomes.

20.
3 Biotech ; 10(2): 72, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32030341

ABSTRACT

Bud dormancy is one of the most important defensive mechanisms through which plants resist cold stress during harsh winter weather. DAM, Dof, and WRKY have been reported to be involved in many biological processes, including bud dormancy. In the present study, grapevine (Vitis vinifera) and other thirteen plants (six woody plants and seven herbaceous plants) were analyzed for the quantity, sequence structure, and evolution patterns of their DAM, Dof, and WRKY gene family members. Moreover, the expression of VvDAM, VvDof, and VvWRKY genes was also investigated. Thus, 51 DAM, 1,205 WRKY, and 489 Dof genes were isolated from selected genomes, while 5 DAM, 114 WRKY, and 50 Dof duplicate gene pairs were identified in 10 genomes. Moreover, WGD and segmental duplication events were associated with the majority of the expansions of Dof and WRKY gene families. The VvDAM, VvDof, and VvWRKY genes significantly differentially expressed throughout bud dormancy outnumbered those significantly differentially expressed throughout fruit development or under abiotic stresses. Interestingly, multiple stress responsive genes were identified, such as VvDAM (VIT_00s0313g00070), two VvDof genes (VIT_18s0001g11310 and VIT_02s0025g02250), and two VvWRKY genes (VIT_07s0031g01710 and VIT_11s0052g00450). These data provide candidate genes for molecular biology research investigating bud dormancy and responses to abiotic stresses (namely salt, drought, copper, and waterlogging).

SELECTION OF CITATIONS
SEARCH DETAIL
...