Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Publication year range
1.
Front Med (Lausanne) ; 10: 1109910, 2023.
Article in English | MEDLINE | ID: mdl-37181348

ABSTRACT

Background: The relationship between human serum albumin levels and the prognosis of critical care patients with chronic obstructive pulmonary disease (COPD) remains controversial. Objective: To investigate the relationship between serum albumin levels and in-hospital mortality in critical care patients with COPD. METHODS: This study used a retrospective observational cohort from the Medical Information in Intensive Care database (MIMIC-IV) in the United States. Multivariate Cox regression analysis was used to assess the relationship between serum albumin levels and in-hospital mortality. A restricted cubic spline line was also used to explore nonlinear relationship. Results: A total of 3,398 critical care patients with COPD were included. The overall in-hospital mortality was 12.4%. We found a negative relationship between human serum albumin and in-hospital mortality (HR = 0.97, 95% CI 0.96-0.99, p = 0.002). Conclusion: In critical care patients with COPD, there was a negative association between human serum albumin and in-hospital mortality.

2.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-871579

ABSTRACT

Objective:To detect the hemodynamic mechanism of the novel endovascular stent on complicated abdominal aortic aneurysms by Computational Fluid Dynamics(CFD) firstly, and then compare the effect of the novel endovascular stent and the streamliner multilayer flow modulator(SMFM) stent.Methods:All medical images were obtained by computed tomography. A semiautomatic segmentation protocol within Mimics(v17.0; Materialise, Leuven, Belgium) was used to extract the threedimensional aortic aneurysms. The stents was generated numerically and fitted along the aortic aneurysms. The lumen volume represented the fluid domain that was discretised in smaller volumes, which defined a mesh within the ICEM software(Ansys ICEM CFD v15.0). Hemodynamic analysis was performed with software Fluent 16.0.Results:Both kinds of stents can change the pattern of flow distribution. Compared with SMFM, the novel endovascular stent can significantly reduce the flow velocity in aneurysms, the shear force and the pressure on the aneurysms wall.What’s more, the flow velocity of the branch artery was accelerated by the novel endovascular stent.Conclusion:The novel endovascular stent can significantly reduce the flow velocity in aneurysms, the shear force and the pressure on the aneurysms wall, and acceleratethe the flow velocity of the branch artery.

3.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-799067

ABSTRACT

Objective@#To detect the hemodynamic mechanism of the novel endovascular stent on complicated abdominal aortic aneurysms by Computational Fluid Dynamics(CFD) firstly, and then compare the effect of the novel endovascular stent and the streamliner multilayer flow modulator(SMFM) stent.@*Methods@#All medical images were obtained by computed tomography. A semiautomatic segmentation protocol within Mimics(v17.0; Materialise, Leuven, Belgium) was used to extract the threedimensional aortic aneurysms. The stents was generated numerically and fitted along the aortic aneurysms. The lumen volume represented the fluid domain that was discretised in smaller volumes, which defined a mesh within the ICEM software(Ansys ICEM CFD v15.0). Hemodynamic analysis was performed with software Fluent 16.0.@*Results@#Both kinds of stents can change the pattern of flow distribution. Compared with SMFM, the novel endovascular stent can significantly reduce the flow velocity in aneurysms, the shear force and the pressure on the aneurysms wall.What’s more, the flow velocity of the branch artery was accelerated by the novel endovascular stent.@*Conclusion@#The novel endovascular stent can significantly reduce the flow velocity in aneurysms, the shear force and the pressure on the aneurysms wall, and acceleratethe the flow velocity of the branch artery.

SELECTION OF CITATIONS
SEARCH DETAIL