Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Language
Publication year range
1.
Article in English | WPRIM (Western Pacific) | ID: wpr-30370

ABSTRACT

Free fatty acids (FFAs) are important substrates for mitochondrial oxidative metabolism and ATP synthesis but also cause serious stress to various tissues, contributing to the development of metabolic diseases. CD36 is a major mediator of cellular FFA uptake. Inside the cell, saturated FFAs are able to induce the production of cytosolic and mitochondrial reactive oxygen species (ROS), which can be prevented by co-exposure to unsaturated FFAs. There are close connections between oxidative stress and organellar Ca²⁺ homeostasis. Highly oxidative conditions induced by palmitate trigger aberrant endoplasmic reticulum (ER) Ca²⁺ release and thereby deplete ER Ca²⁺ stores. The resulting ER Ca²⁺ deficiency impairs chaperones of the protein folding machinery, leading to the accumulation of misfolded proteins. This ER stress may further aggravate oxidative stress by augmenting ER ROS production. Secondary to ER Ca²⁺ release, cytosolic and mitochondrial matrix Ca²⁺ concentrations can also be altered. In addition, plasmalemmal ion channels operated by ER Ca²⁺ depletion mediate persistent Ca²⁺ influx, further impairing cytosolic and mitochondrial Ca²⁺ homeostasis. Mitochondrial Ca²⁺ overload causes superoxide production and functional impairment, culminating in apoptosis. This vicious cycle of lipotoxicity occurs in multiple tissues, resulting in β-cell failure and insulin resistance in target tissues, and further aggravates diabetic complications.


Subject(s)
Adenosine Triphosphate , Apoptosis , Calcium , Cytosol , Diabetes Complications , Endoplasmic Reticulum , Fatty Acids, Nonesterified , Homeostasis , Insulin Resistance , Ion Channels , Metabolic Diseases , Metabolism , Oxidative Stress , Protein Folding , Reactive Oxygen Species , Superoxides
2.
PLoS One ; 10(6): e0131361, 2015.
Article in English | MEDLINE | ID: mdl-26121468

ABSTRACT

To study multi-fractal behavior of corroded steel surface, a range of fractal surfaces of corroded surfaces of Q235 steel were constructed by using the Weierstrass-Mandelbrot method under a high total accuracy. The multi-fractal spectrum of fractal surface of corroded steel was calculated to study the multi-fractal characteristics of the W-M corroded surface. Based on the shape feature of the multi-fractal spectrum of corroded steel surface, the least squares method was applied to the quadratic fitting of the multi-fractal spectrum of corroded surface. The fitting function was quantitatively analyzed to simplify the calculation of multi-fractal characteristics of corroded surface. The results showed that the multi-fractal spectrum of corroded surface was fitted well with the method using quadratic curve fitting, and the evolution rules and trends were forecasted accurately. The findings can be applied to research on the mechanisms of corroded surface formation of steel and provide a new approach for the establishment of corrosion damage constitutive models of steel.


Subject(s)
Fractals , Steel/chemistry , Atmosphere , Computer Simulation , Corrosion , Lasers , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL