Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Infect Immun ; 86(6)2018 06.
Article in English | MEDLINE | ID: mdl-29610259

ABSTRACT

Campylobacter jejuni is a leading cause of bacterially derived gastroenteritis worldwide. Campylobacter is most commonly acquired through the consumption of undercooked poultry meat or through drinking contaminated water. Following ingestion, Campylobacter adheres to the intestinal epithelium and mucus layer, causing toxin-mediated inflammation and inhibition of fluid reabsorption. Currently, the human response to infection is relatively unknown, and animal hosts that model these responses are rare. As such, we examined patient fecal samples for the accumulation of the neutrophil protein calgranulin C during infection with Campylobacter jejuni In response to infection, calgranulin C was significantly increased in the feces of humans. To determine whether calgranulin C accumulation occurs in an animal model, we examined disease in ferrets. Ferrets were effectively infected by C. jejuni, with peak fecal loads observed at day 3 postinfection and full resolution by day 12. Serum levels of interleukin-10 (IL-10) and tumor necrosis factor alpha (TNF-α) significantly increased in response to infection, which resulted in leukocyte trafficking to the colon. As a result, calgranulin C increased in the feces of ferrets at the time when C. jejuni loads decreased. Further, the addition of purified calgranulin C to C. jejuni cultures was found to inhibit growth in a zinc-dependent manner. These results suggest that upon infection with C. jejuni, leukocytes trafficked to the intestine release calgranulin C as a mechanism for inhibiting C. jejuni growth.


Subject(s)
Campylobacter jejuni/growth & development , S100A12 Protein/metabolism , Zinc/metabolism , Animals , Campylobacter jejuni/drug effects , Colon/cytology , Colon/microbiology , Female , Ferrets , Humans , Leukocytes , Male , Microbial Sensitivity Tests , S100A12 Protein/genetics
2.
Front Microbiol ; 8: 487, 2017.
Article in English | MEDLINE | ID: mdl-28386253

ABSTRACT

Campylobacter jejuni is the leading cause of bacteria-derived gastroenteritis worldwide. In the developed world, Campylobacter is usually acquired by consuming under-cooked poultry, while in the developing world it is often obtained through drinking contaminated water. Once consumed, the bacteria adhere to the intestinal epithelium or mucus layer, causing toxin-mediated inhibition of fluid reabsorption from the intestine and invasion-induced inflammation and diarrhea. Traditionally, severe or prolonged cases of campylobacteriosis have been treated with antibiotics; however, overuse of these antibiotics has led to the emergence of antibiotic-resistant strains. As the incidence of antibiotic resistance, emergence of post-infectious diseases, and economic burden associated with Campylobacter increases, it is becoming urgent that novel treatments are developed to reduce Campylobacter numbers in commercial poultry and campylobacteriosis in humans. The purpose of this review is to provide the current status of present and proposed treatments to combat Campylobacter infection in humans and colonization in animal reservoirs. These treatments include anti-Campylobacter compounds, probiotics, bacteriophage, vaccines, and anti-Campylobacter bacteriocins, all of which may be successful at reducing the incidence of campylobacteriosis in humans and/or colonization loads in poultry. In addition to reviewing treatments, we will also address several proposed targets that may be used in future development of novel anti-Campylobacter treatments.

SELECTION OF CITATIONS
SEARCH DETAIL
...