Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
2.
Article in English | MEDLINE | ID: mdl-38748519

ABSTRACT

World Health Organization (WHO) has identified depression as a significant contributor to global disability, creating a complex thread in both public and private health. Electroencephalogram (EEG) can accurately reveal the working condition of the human brain, and it is considered an effective tool for analyzing depression. However, manual depression detection using EEG signals is time-consuming and tedious. To address this, fully automatic depression identification models have been designed using EEG signals to assist clinicians. In this study, we propose a novel automated deep learning-based depression detection system using EEG signals. The required EEG signals are gathered from publicly available databases, and three sets of features are extracted from the original EEG signal. Firstly, spectrogram images are generated from the original EEG signal, and 3-dimensional Convolutional Neural Networks (3D-CNN) are employed to extract deep features. Secondly, 1D-CNN is utilized to extract deep features from the collected EEG signal. Thirdly, spectral features are extracted from the collected EEG signal. Following feature extraction, optimal weights are fused with the three sets of features. The selection of optimal features is carried out using the developed Chaotic Owl Invasive Weed Search Optimization (COIWSO) algorithm. Subsequently, the fused features undergo analysis using the Self-Attention-based Gated Densenet (SA-GDensenet) for depression detection. The parameters within the detection network are optimized with the assistance of the same COIWSO. Finally, implementation results are analyzed in comparison to existing detection models. The experimentation findings of the developed model show 96% of accuracy. Throughout the empirical result, the findings of the developed model show better performance than traditional approaches.

3.
Article in English | MEDLINE | ID: mdl-38010935

ABSTRACT

Medical image analysis plays a crucial role in healthcare systems of Internet of Medical Things (IoMT), aiding in the diagnosis, treatment planning, and monitoring of various diseases. With the increasing adoption of artificial intelligence (AI) techniques in medical image analysis, there is a growing need for transparency and trustworthiness in decision-making. This study explores the application of explainable AI (XAI) in the context of medical image analysis within medical cyber-physical systems (MCPS) to enhance transparency and trustworthiness. To this end, this study proposes an explainable framework that integrates machine learning and knowledge reasoning. The explainability of the model is realized when the framework evolution target feature results and reasoning results are the same and are relatively reliable. However, using these technologies also presents new challenges, including the need to ensure the security and privacy of patient data from IoMT. Therefore, attack detection is an essential aspect of MCPS security. For the MCPS model with only sensor attacks, the necessary and sufficient conditions for detecting attacks are given based on the definition of sparse observability. The corresponding attack detector and state estimator are designed by assuming that some IoMT sensors are under protection. It is expounded that the IoMT sensors under protection play an important role in improving the efficiency of attack detection and state estimation. The experimental results show that the XAI in the context of medical image analysis within MCPS improves the accuracy of lesion classification, effectively removes low-quality medical images, and realizes the explainability of recognition results. This helps doctors understand the logic of the system's decision-making and can choose whether to trust the results based on the explanation given by the framework.

4.
Multimed Tools Appl ; : 1-24, 2023 Jun 06.
Article in English | MEDLINE | ID: mdl-37362729

ABSTRACT

In recent years, there has been a surge in the use of deep learning systems for e-healthcare applications. While these systems can provide significant benefits regarding improved diagnosis and treatment, they also pose substantial privacy risks to patients' sensitive data. Privacy is a crucial issue in e-healthcare, and it is essential to keep patient information secure. A new approach based on multi-agent-based privacy metrics for e-healthcare deep learning systems has been proposed to address this issue. This approach uses a combination of deep learning and multi-agent systems to provide a more robust and secure method for e-healthcare applications. The multi-agent system is designed to monitor and control the access to patients' data by different agents in the system. Each agent is assigned a specific role and has specific data access permissions. The system employs a set of privacy metrics to a substantial privacy level of the data accessed by each agent. These metrics include confidentiality, integrity, and availability, evaluated in real-time and used to identify potential privacy violations. In addition to the multi-agent system, the deep learning component is also integrated into the system to improve the accuracy of diagnoses and treatment plans. The deep learning model is trained on a large dataset of medical records and can accurately predict the diagnosis and treatment plan based on the patient's symptoms and medical history. The multi-agent-based privacy metrics for the e-healthcare deep learning system approach have several advantages. It provides a more secure system for e-healthcare applications by ensuring only authorized agents can access patients' data. Privacy metrics enable the system to identify potential privacy violations in real-time, thereby reducing the risk of data breaches. Finally, integrating deep learning improves the accuracy of diagnoses and treatment plans, leading to better patient outcomes.

5.
Big Data ; 10(4): 356-367, 2022 08.
Article in English | MEDLINE | ID: mdl-35510928

ABSTRACT

In data analysis, data scientists usually focus on the size of data instead of features selection. Owing to the extreme growth of internet resources data are growing exponentially with more features, which leads to big data dimensionality problems. The high volume of features contains much of redundant data, which may affect the feature classification in terms of accuracy. In the current scenario, feature selection attracts the research community to identify and to remove irrelevant features with more scalability and accuracy. To accommodate this, in this research study, we present a novel feature selection framework that is implemented on Hadoop and Apache Spark platform. In contrast, the proposed model also includes rough sets and differential evolution (DE) algorithm, where rough sets are used to find the minimum features, but rough sets do not consider the degree of overlying in the data. Therefore, DE algorithm is used to find the most optimal features. The proposed model is studied with Random Forest and Naive Bayes classifiers on five well-known data sets and compared with existing feature selection models presented in the literature. The results show that the proposed model performs well in terms of scalability and accuracy.


Subject(s)
Algorithms , Big Data , Bayes Theorem , Data Analysis
6.
Environ Dev Sustain ; : 1-44, 2022 Jan 06.
Article in English | MEDLINE | ID: mdl-35013669

ABSTRACT

Technical growth in the field of communication and information is an important aspect in the development and innovation of industrial automation and in the recent advances in the field of communications. The recent development of mobile communications has led to worldwide ubiquitous information sharing and has rehabilitated human lifestyles. This communication revolution is now introducing effective information sharing into the automotive industry. The current technology is extending this field of applications for vehicle safety, improving the efficiency in traffic management, offering reliable assistance for drivers and supporting the modern field of vehicle design. With these advances, the vehicular network concept has grabbed worldwide attention. In this article, a novel sampling-based estimation scheme (SES), to initiate the involvements and increase the probabilistic contacts of vehicle communication. The scheme is divided into a few segments, for ease of operations with a perfect sample. The contact duration between two vehicles moving in opposite directions on their overlapped road is lower, but their contact probability is higher. By contrast, the duration of the contact between two vehicles moving in the same direction on their overlapped road is higher, but their contact probability is lower. SES can easily obtain efficient routing by considering the above-mentioned stochastic contacts. Furthermore, we investigate the content transmission among the probabilistic contacts, by using the flow model with probabilistic capacities. The performance of the proposed SES is experimentally validated with the probabilistic contacts in VANETs.

7.
J Biomol Struct Dyn ; 40(13): 5836-5847, 2022 08.
Article in English | MEDLINE | ID: mdl-33475019

ABSTRACT

In the hospital, because of the rise in cases daily, there are a small number of COVID-19 test kits available. For this purpose, a rapid alternative diagnostic choice to prevent COVID-19 spread among individuals must be implemented as an automatic detection method. In this article, the multi-objective optimization and deep learning-based technique for identifying infected patients with coronavirus using X-rays is proposed. J48 decision tree approach classifies the deep feature of corona affected X-ray images for the efficient detection of infected patients. In this study, 11 different convolutional neural network-based (CNN) models (AlexNet, VGG16, VGG19, GoogleNet, ResNet18, ResNet50, ResNet101, InceptionV3, InceptionResNetV2, DenseNet201 and XceptionNet) are developed for detection of infected patients with coronavirus pneumonia using X-ray images. The efficiency of the proposed model is tested using k-fold cross-validation method. Moreover, the parameters of CNN deep learning model are tuned using multi-objective spotted hyena optimizer (MOSHO). Extensive analysis shows that the proposed model can classify the X-ray images at a good accuracy, precision, recall, specificity and F1-score rates. Extensive experimental results reveal that the proposed model outperforms competitive models in terms of well-known performance metrics. Hence, the proposed model is useful for real-time COVID-19 disease classification from X-ray chest images.Communicated by Ramaswamy H. Sarma.


Subject(s)
COVID-19 , Deep Learning , COVID-19/diagnostic imaging , Humans , Neural Networks, Computer , SARS-CoV-2 , X-Rays
8.
Curr Med Imaging ; 18(5): 570-582, 2022.
Article in English | MEDLINE | ID: mdl-34503419

ABSTRACT

BACKGROUND: Dealing with the COVID-19 pandemic has been one of the most important objectives of many countries.Intently observing the growth dynamics of the cases is one way to accomplish the solution for the pandemic. INTRODUCTION: Infectious diseases are caused by a micro-organism/virus from another person or an animal. It causes difficulty at both the individual and collective levels. The ongoing episode of COVID-19 ailment, brought about by the new coronavirus first detected in Wuhan, China, and its quick spread far and wide revived the consideration of the world towards the impact of such plagues on an individual's everyday existence. We suggested that a basic structure be developed to work with the progressive examination of the development rate (cases/day) and development speed (cases/day2) of COVID-19 cases. METHODS: We attempt to exploit the effectiveness of advanced deep learning algorithms to predict the growth of infectious diseases based on time series data and classification based on symptoms text data and X-ray image data. The goal is to identify the nature of the phenomenon represented by the sequence of observations and forecasting. RESULTS: We concluded that our good habits and healthy lifestyle prevent the risk of COVID-19. We observed that by simply using masks in our daily lives, we could flatten the curve of increasing cases.Limiting human mobility resulted in a significant decrease in the development speed within a few days, a deceleration within two weeks, and a close to fixed development within six weeks. CONCLUSION: These outcomes authenticate that mass social isolation is a profoundly viable measure against the spread of SARS-CoV-2, as recently recommended. Aside from the research of country- by-country predominance, the proposed structure is useful for city, state, district, and discretionary region information, serving as a resource for screening COVID-19 cases in the area.


Subject(s)
COVID-19 , Communicable Diseases , Deep Learning , Algorithms , Humans , Pandemics/prevention & control , SARS-CoV-2
9.
Soft comput ; 25(22): 14413-14428, 2021.
Article in English | MEDLINE | ID: mdl-34608371

ABSTRACT

This paper presents a GPU-accelerated implementation of an image encryption algorithm. The algorithm uses the concepts of a modified XOR cipher to encrypt and decrypt the images, with an encryption pad, generated using the shared secret key and some initialization vectors. It uses a genetically optimized pseudo-random generator that outputs a stream of random bytes of the specified length. The proposed algorithm is subjected to a number of theoretical, experimental, and mathematical analyses, to examine its performance and security against a number of possible attacks, using the following metrics - histogram analysis, correlation analysis, information entropy analysis, NPCR and UACI. The performance analysis carried out shows an average speedup-ratio of 3.489 for encryption, and 4.055 for decryption operation, between the serial and parallel implementations using GPU. The algorithm aims to provide better performance benchmarks, which can significantly improve the experience in the relevant use-cases, like real-time media applications.

10.
Technol Health Care ; 29(6): 1319-1337, 2021.
Article in English | MEDLINE | ID: mdl-34092679

ABSTRACT

BACKGROUND: Internet of Things (IoT) technology provides a tremendous and structured solution to tackle service deliverance aspects of healthcare in terms of mobile health and remote patient tracking. In medicine observation applications, IoT and cloud computing serves as an assistant in the health sector and plays an incredibly significant role. Health professionals and technicians have built an excellent platform for people with various illnesses, leveraging principles of wearable technology, wireless channels, and other remote devices for low-cost healthcare monitoring. OBJECTIVE: This paper proposed the Fog-IoT-assisted multisensor intelligent monitoring model (FIoT-MIMM) for analyzing the patient's physical health condition. METHOD: The proposed system uses a multisensor device for collecting biometric and medical observing data. The main point is to continually generate emergency alerts on mobile phones from the fog system to users. For the precautionary steps and suggestions for patients' health, a fog layer's temporal information is used. RESULTS: Experimental findings show that the proposed FIoT-MIMM model has less response time and high accuracy in determining a patient's condition than other existing methods. Furthermore, decision making based on real-time healthcare information further improves the utility of the suggested model.


Subject(s)
Internet of Things , Telemedicine , Wearable Electronic Devices , Cloud Computing , Delivery of Health Care , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...