Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Transpl Int ; 37: 12468, 2024.
Article in English | MEDLINE | ID: mdl-38699175

ABSTRACT

Kidney organoids are an innovative tool in transplantation research. The aim of the present study was to investigate whether kidney organoids are susceptible for allo-immune attack and whether they can be used as a model to study allo-immunity in kidney transplantation. Human induced pluripotent stem cell-derived kidney organoids were co-cultured with human peripheral blood mononuclear cells (PBMC), which resulted in invasion of allogeneic T-cells around nephron structures and macrophages in the stromal cell compartment of the organoids. This process was associated with the induction of fibrosis. Subcutaneous implantation of kidney organoids in immune-deficient mice followed by adoptive transfer of human PBMC led to the invasion of diverse T-cell subsets. Single cell transcriptomic analysis revealed that stromal cells in the organoids upregulated expression of immune response genes upon immune cell invasion. Moreover, immune regulatory PD-L1 protein was elevated in epithelial cells while genes related to nephron differentiation and function were downregulated. This study characterized the interaction between immune cells and kidney organoids, which will advance the use of kidney organoids for transplantation research.


Subject(s)
Kidney Transplantation , Kidney , Organoids , Humans , Organoids/immunology , Animals , Kidney/immunology , Mice , Coculture Techniques , Leukocytes, Mononuclear/immunology , Induced Pluripotent Stem Cells/cytology , T-Lymphocytes/immunology , Immune System , B7-H1 Antigen/metabolism , Macrophages/immunology
2.
Chronobiol Int ; 41(1): 93-104, 2024 01.
Article in English | MEDLINE | ID: mdl-38047486

ABSTRACT

Seasonal affective disorder (SAD) is a recurrent depression triggered by exposure to short photoperiods, with a subset of patients reporting hypersomnia, increased appetite, and carbohydrate craving. Dysfunction of the microbiota - gut - brain axis is frequently associated with depressive disorders, but its role in SAD is unknown. Nile grass rats (Arvicanthis niloticus) are potentially useful for exploring the pathophysiology of SAD, as they are diurnal and have been found to exhibit anhedonia and affective-like behavior in response to short photoperiods. Further, given grass rats have been found to spontaneously develop metabolic syndrome, they may be particularly susceptible to environmental triggers of metabolic dysbiosis. We conducted a 2 × 2 factorial design experiment to test the effects of short photoperiod (4 h:20 h Light:Dark (LD) vs. neutral 12:12 LD), access to a high concentration (8%) sucrose solution, and the interaction between the two, on activity, sleep, liver steatosis, and the gut microbiome of grass rats. We found that animals on short photoperiods maintained robust diel rhythms and similar subjective day lengths as controls in neutral photoperiods but showed disrupted activity and sleep patterns (i.e. a return to sleep after an initial bout of activity that occurs ~ 13 h before lights off). We found no evidence that photoperiod influenced sucrose consumption. By the end of the experiment, some grass rats were overweight and exhibited signs of non-alcoholic fatty liver disease (NAFLD) with micro- and macro-steatosis. However, neither photoperiod nor access to sucrose solution significantly affected the degree of liver steatosis. The gut microbiome of grass rats varied substantially among individuals, but most variation was attributable to parental effects and the microbiome was unaffected by photoperiod or access to sucrose. Our study indicates short photoperiod leads to disrupted activity and sleep in grass rats but does not impact sucrose consumption or exacerbate metabolic dysbiosis and NAFLD.


Subject(s)
Gastrointestinal Microbiome , Non-alcoholic Fatty Liver Disease , Seasonal Affective Disorder , Humans , Animals , Photoperiod , Circadian Rhythm/physiology , Dysbiosis , Murinae/physiology , Sleep , Carbohydrates/pharmacology , Sucrose/pharmacology
3.
Integr Comp Biol ; 2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37419503

ABSTRACT

Torpor is an incredibly efficient energy-saving strategy that many endothermic birds and mammals use to save energy, by lowering their metabolic rates, heart rates, and typically body temperatures. Over the last few decades, the study of daily torpor-in which torpor is used for less than 24 hours per bout-has advanced rapidly. The papers in this issue cover the ecological and evolutionary drivers of torpor, as well as some of the mechanisms governing torpor use. We identified broad focus areas that need special attention: clearly defining the various parameters that indicate torpor use and identifying the genetic and neurological mechanisms regulating torpor. Recent studies on daily torpor and heterothermy, including the ones in this issue, have furthered the field immensely. We look forward to a period of immense growth in this field.

4.
J Therm Biol ; 112: 103391, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36796880

ABSTRACT

For reproducing animals, maintaining energy balance despite thermoregulatory challenges is important for surviving and successfully raising offspring. This is especially apparent in small endotherms that exhibit high mass-specific metabolic rates and live in unpredictable environments. Many of these animals use torpor, substantially reducing their metabolic rate and often body temperature to cope with high energetic demands during non-foraging periods. In birds, when the incubating parent uses torpor, the lowered temperatures that thermally sensitive offspring experience could delay development or increase mortality risk. We used thermal imaging to noninvasively explore how nesting female hummingbirds sustain their own energy balance while effectively incubating their eggs and brooding their chicks. We located 67 active Allen's hummingbird (Selasphorus sasin) nests in Los Angeles, California and recorded nightly time-lapse thermal images at 14 of these nests for 108 nights using thermal cameras. We found that nesting females usually avoided entering torpor, with one bird entering deep torpor on two nights (2% of nights), and two other birds possibly using shallow torpor on three nights (3% of nights). We also modeled nightly energetic requirements of a bird experiencing nest temperatures vs. ambient temperature and using torpor or remaining normothermic, using data from similarly-sized broad-billed hummingbirds. Overall, we suggest that the warm environment of the nest, and possibly shallow torpor, help brooding female hummingbirds reduce their own energy requirements while prioritizing the energetic demands of their offspring.


Subject(s)
Body Temperature Regulation , Torpor , Animals , Female , Body Temperature , Energy Metabolism , Chickens
5.
Integr Comp Biol ; 2022 Aug 13.
Article in English | MEDLINE | ID: mdl-35963649

ABSTRACT

Females and males can exhibit striking differences in body size, relative trait size, physiology and behavior. As a consequence the sexes can have very different rates of whole-body energy use, or converge on similar rates through different physiological mechanisms. Yet many studies that measure the relationship between metabolic rate and body size only pay attention to a single sex (more often males), or do not distinguish between sexes. We present four reasons why explicit attention to energy-use between the sexes can yield insight into the physiological mechanisms that shape broader patterns of metabolic scaling in nature. First, the sexes often differ considerably in their relative investment in reproduction which shapes much of life-history and rates of energy use. Second, males and females share a majority of their genome but may experience different selective pressures. Sex-specific energy profiles can reveal how the energetic needs of individuals are met despite the challenge of within-species genetic constraints. Third, sexual selection often pushes growth and behavior to physiological extremes. Exaggerated sexually selected traits are often most prominent in one sex, can comprise up to 50% of body mass and thus provide opportunities to uncover energetic constraints of trait growth and maintenance. Finally, sex-differences in behavior such as mating-displays, long-distance dispersal and courtship can lead to drastically different energy allocation among the sexes; the physiology to support this behavior can shape patterns of metabolic scaling. The mechanisms underlying metabolic scaling in females, males and hermaphroditic animals can provide opportunities to develop testable predictions that enhance our understanding of energetic scaling patterns in nature.

6.
Stem Cells ; 40(6): 577-591, 2022 06 22.
Article in English | MEDLINE | ID: mdl-35524742

ABSTRACT

Induced pluripotent stem cell (iPSC)-derived kidney organoids are a potential tool for the regeneration of kidney tissue. They represent an early stage of nephrogenesis and have been shown to successfsully vascularize and mature further in vivo. However, there are concerns regarding the long-term safety and stability of iPSC derivatives. Specifically, the potential for tumorigenesis may impede the road to clinical application. To study safety and stability of kidney organoids, we analyzed their potential for malignant transformation in a teratoma assay and following long-term subcutaneous implantation in an immune-deficient mouse model. We did not detect fully functional residual iPSCs in the kidney organoids as analyzed by gene expression analysis, single-cell sequencing and immunohistochemistry. Accordingly, kidney organoids failed to form teratoma. Upon long-term subcutaneous implantation of whole organoids in immunodeficient IL2Ry-/-RAG2-/- mice, we observed tumor formation in 5 out of 103 implanted kidney organoids. These tumors were composed of WT1+CD56+ immature blastemal cells and showed histological resemblance with Wilms tumor. No genetic changes were identified that contributed to the occurrence of tumorigenic cells within the kidney organoids. However, assessment of epigenetic changes revealed a unique cluster of differentially methylated genes that were also present in undifferentiated iPSCs. We discovered that kidney organoids have the capacity to form tumors upon long-term implantation. The presence of epigenetic modifications combined with the lack of environmental cues may have caused an arrest in terminal differentiation. Our results indicate that the safe implementation of kidney organoids should exclude the presence of pro-tumorigenic methylation in kidney organoids.


Subject(s)
Induced Pluripotent Stem Cells , Teratoma , Animals , Cell Differentiation , Induced Pluripotent Stem Cells/metabolism , Kidney/pathology , Mice , Organogenesis , Organoids/metabolism , Teratoma/pathology
7.
J Exp Biol ; 225(2)2022 01 15.
Article in English | MEDLINE | ID: mdl-34989393

ABSTRACT

Many endotherms use torpor, saving energy by a controlled reduction of their body temperature and metabolic rate. Some species (e.g. arctic ground squirrels, hummingbirds) enter deep torpor, dropping their body temperature by 23-37°C, while others can only enter shallow torpor (e.g. pigeons, 3-10°C reduction). However, deep torpor in mammals can increase predation risk (unless animals are in burrows or caves), inhibit immune function and result in sleep deprivation, so even for species that can enter deep torpor, facultative shallow torpor might help balance energy savings with these potential costs. Deep torpor occurs in three avian orders, but the trade-offs of deep torpor in birds are unknown. Although the literature hints that some bird species (mousebirds and perhaps hummingbirds) can use both shallow and deep torpor, little empirical evidence of such an avian heterothermy spectrum within species exists. We infrared imaged three hummingbird species that are known to use deep torpor, under natural temperature and light cycles, to test whether they were also capable of shallow torpor. All three species used both deep and shallow torpor, often on the same night. Depending on the species, they used shallow torpor for 5-35% of the night. The presence of a heterothermic spectrum in these bird species indicates a capacity for fine-scale physiological and genetic regulation of avian torpid metabolism.


Subject(s)
Torpor , Animals , Birds/physiology , Body Temperature , Body Temperature Regulation/physiology , Energy Metabolism , Mammals/physiology , Torpor/physiology
8.
Stem Cells Dev ; 30(22): 1103-1114, 2021 11.
Article in English | MEDLINE | ID: mdl-34549597

ABSTRACT

Human-induced pluripotent stem cell (iPSC)-derived kidney organoids have the potential to advance studies to kidney development and disease. However, reproducible generation of kidney organoids is a challenge. A large variability in the percentage of nephron structures and the expression of kidney-specific genes was observed among organoids, showing no association with iPSC lines. To associate the quality of kidney organoid differentiation with predictive markers, a ranking system was developed based on the ratio of nephron structure determined by histological examination. Well-differentiated organoids were defined as organoids with >30% nephron structure and vice versa. Subsequently, correlations were made with expression profiles of iPSC markers, early kidney development markers, and fibrosis markers. Higher expression of sex-determining region Y-box 2 (SOX2) during differentiation was associated with poorly differentiated kidney organoid. Furthermore, early secretion of basic fibroblast growth factor (FGF2) predicted poorly differentiated kidney organoid. Of interest, whereas cadherin-1 (CDH1) expression in kidney organoids indicates distal tubules formation, onefold higher CDH1 expression in iPSC predicted poor differentiation. High expression of the stromal progenitor marker Forkhead Box D1 (FOXD1) and significantly increased TGFß levels were found in well-differentiated kidney organoids. These early expression profiles could predict the outcome of kidney organoid formation. This study helps to improve the robustness of kidney organoid protocols.


Subject(s)
Induced Pluripotent Stem Cells , Pluripotent Stem Cells , Cell Differentiation , Forkhead Transcription Factors/metabolism , Humans , Kidney , Organoids
10.
Dis Model Mech ; 14(1)2021 01 26.
Article in English | MEDLINE | ID: mdl-33735098

ABSTRACT

The development of animal models is a critical step for exploring the underlying pathophysiological mechanisms of major affective disorders and for evaluating potential therapeutic approaches. Although most neuropsychiatric research is performed on nocturnal rodents, differences in how diurnal and nocturnal animals respond to changing photoperiods, combined with a possible link between circadian rhythm disruption and affective disorders, has led to a call for the development of diurnal animal models. The need for diurnal models is most clear for seasonal affective disorder (SAD), a widespread recurrent depressive disorder that is linked to exposure to short photoperiods. Here, we briefly review what is known regarding the etiology of SAD and then examine progress in developing appropriate diurnal rodent models. Although circadian disruption is often invoked as a key contributor to SAD, a mechanistic understanding of how misalignment between endogenous circadian physiology and daily environmental rhythms affects mood is lacking. Diurnal rodents show promise as models of SAD, as changes in affective-like behaviors are induced in response to short photoperiods or dim-light conditions, and symptoms can be ameliorated by brief exposure to intervals of bright light coincident with activity onset. One exciting avenue of research involves the orexinergic system, which regulates functions that are disturbed in SAD, including sleep cycles, the reward system, feeding behavior, monoaminergic neurotransmission and hippocampal neurogenesis. However, although diurnal models make intuitive sense for the study of SAD and are more likely to mimic circadian disruption, their utility is currently hampered by a lack of genomic resources needed for the molecular interrogation of potential mechanisms.


Subject(s)
Circadian Rhythm , Depression/physiopathology , Light , Photoperiod , Seasonal Affective Disorder/physiopathology , Animals , Anxiety/psychology , Behavior, Animal/physiology , Choice Behavior , Cognition , Disease Models, Animal , Humans , Maze Learning , Orexins/physiology , Social Behavior , Swimming/physiology
11.
Kidney Int ; 99(1): 134-147, 2021 01.
Article in English | MEDLINE | ID: mdl-32918942

ABSTRACT

Renin production by the kidney is of vital importance for salt, volume, and blood pressure homeostasis. The lack of human models hampers investigation into the regulation of renin and its relevance for kidney physiology. To develop such a model, we used human induced pluripotent stem cell-derived kidney organoids to study the role of renin and the renin-angiotensin system in the kidney. Extensive characterization of the kidney organoids revealed kidney-specific cell populations consisting of podocytes, proximal and distal tubular cells, stromal cells and endothelial cells. We examined the presence of various components of the renin-angiotensin system such as angiotensin II receptors, angiotensinogen, and angiotensin-converting enzymes 1 and 2. We identified by single-cell sequencing, immunohistochemistry, and functional assays that cyclic AMP stimulation induces a subset of pericytes to increase the synthesis and secretion of enzymatically active renin. Renin production by the organoids was responsive to regulation by parathyroid hormone. Subcutaneously implanted kidney organoids in immunodeficient IL2Ry-/-Rag2-/- mice were successfully vascularized, maintained tubular and glomerular structures, and retained capacity to produce renin two months after implantation. Thus, our results demonstrate that kidney organoids express renin and provide insights into the endocrine potential of human kidney organoids, which is important for regenerative medicine in the context of the endocrine system.


Subject(s)
Induced Pluripotent Stem Cells , Renin , Angiotensin II/metabolism , Angiotensinogen/metabolism , Animals , Endothelial Cells/metabolism , Humans , Induced Pluripotent Stem Cells/metabolism , Kidney/metabolism , Mice , Organoids/metabolism , Renin/metabolism , Renin-Angiotensin System
12.
J Anim Ecol ; 89(5): 1254-1261, 2020 05.
Article in English | MEDLINE | ID: mdl-32022903

ABSTRACT

Within-clade allometric relationships represent standard laws of scaling between energy and size, and their outliers provide new avenues for physiological and ecological research. According to the metabolic-level boundaries hypothesis, metabolic rates as a function of mass are expected to scale closer to 0.67 when driven by surface-related processes (e.g. heat or water flux), while volume-related processes (e.g. activity) generate slopes closer to one. In birds, daily energy expenditure (DEE) scales with body mass (M) in the relationship logDEE=2.35+0.68×logM , consistent with surface-level processes driving the relationship. However, taxon-specific patterns differ from the scaling slope of all birds. Hummingbirds have the highest mass-specific metabolic rates among all vertebrates. Previous studies on a few hummingbird species, without accounting for the phylogeny, estimated that the DEE-body mass relationship for hummingbirds was logDEE=1.72+1.21×logM . In Contrast to the theoretical expectations, this slope >1 indicates that larger hummingbirds are less metabolically efficient than smaller hummingbirds. We collected DEE and mass data for 12 hummingbird species, which, combined with published data, represented 17 hummingbird species in eight of nine hummingbird clades over a sixfold size range of body size (2.7-17.5 g). After accounting for phylogenetic relatedness, we found DEE scales with body mass as logDEE=2.04+0.95×logM . This slope of 0.95 is lower than previously estimated for hummingbirds, but much higher than the slope for all birds (0.68). The high slopes of torpor, hovering and flight potentially explain the high interspecific DEE slope for hummingbirds compared to other endotherms.


Subject(s)
Energy Metabolism , Flight, Animal , Animals , Birds , Body Size , Phylogeny
13.
Transplantation ; 103(2): 250-261, 2019 02.
Article in English | MEDLINE | ID: mdl-30489479

ABSTRACT

The worldwide increase in the number of patients with end-stage renal disease leads to a growing waiting list for kidney transplantation resulting from the scarcity of kidney donors. Therefore, alternative treatment options for patients with end-stage renal disease are being sought. In vitro differentiation of stem cells into renal tissue is a promising approach to repair nonfunctional kidney tissue. Impressive headway has been made in the use of stem cells with the use of adult renal progenitor cells, embryonic stem cells, and induced pluripotent stem cells for the development toward primitive kidney structures. Currently, efforts are directed at improving long-term maintenance and stability of the cells. This review aims to provide a comprehensive overview of the cell sources used for the generation of kidney cells and strategies used for transplantation in in vivo models. Furthermore, it provides a perspective on stability and safety during future clinical application of in vitro generated kidney cells.


Subject(s)
Kidney Failure, Chronic/therapy , Kidney Transplantation/methods , Kidney/cytology , Regeneration , Stem Cell Transplantation/methods , Cell Differentiation , Humans , Kidney/blood supply , Nephrons/cytology
14.
Stem Cells ; 36(4): 602-615, 2018 04.
Article in English | MEDLINE | ID: mdl-29341339

ABSTRACT

Mesenchymal stem or stromal cells (MSC) are under investigation as a potential immunotherapy. MSC are usually administered via intravenous infusion, after which they are trapped in the lungs and die and disappear within a day. The fate of MSC after their disappearance from the lungs is unknown and it is unclear how MSC realize their immunomodulatory effects in their short lifespan. We examined immunological mechanisms determining the fate of infused MSC and the immunomodulatory response associated with it. Tracking viable and dead human umbilical cord MSC (ucMSC) in mice using Qtracker beads (contained in viable cells) and Hoechst33342 (staining all cells) revealed that viable ucMSC were present in the lungs immediately after infusion. Twenty-four hours later, the majority of ucMSC were dead and found in the lungs and liver where they were contained in monocytic cells of predominantly non-classical Ly6Clow phenotype. Monocytes containing ucMSC were also detected systemically. In vitro experiments confirmed that human CD14++ /CD16- classical monocytes polarized toward a non-classical CD14++ CD16+ CD206+ phenotype after phagocytosis of ucMSC and expressed programmed death ligand-1 and IL-10, while TNF-α was reduced. ucMSC-primed monocytes induced Foxp3+ regulatory T cell formation in mixed lymphocyte reactions. These results demonstrate that infused MSC are rapidly phagocytosed by monocytes, which subsequently migrate from the lungs to other body sites. Phagocytosis of ucMSC induces phenotypical and functional changes in monocytes, which subsequently modulate cells of the adaptive immune system. It can be concluded that monocytes play a crucial role in mediating, distributing, and transferring the immunomodulatory effect of MSC. Stem Cells 2018;36:602-615.


Subject(s)
Immunomodulation , Lung/immunology , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/immunology , Monocytes/immunology , Phagocytosis , Animals , B7-H1 Antigen/immunology , Heterografts , Humans , Interleukin-10/immunology , Male , Mice , Tumor Necrosis Factor-alpha/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...