Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biomater Adv ; 150: 213440, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37119697

ABSTRACT

In recent years, graphene and its derivatives, owing to their phenomenal surface, and mechanical, electrical, and chemical properties, have emerged as advantageous materials, especially in terms of their potential for antimicrobial applications. Particularly important among graphene's derivatives is graphene oxide (GO) due to the ease with which its surface can be modified, as well as the oxidative and membrane stress that it exerts on microbes. This review encapsulates all aspects regarding the functionalization of graphene-based materials (GBMs) into composites that are highly potent against bacterial, viral, and fungal activities. Governing factors, such as lateral size (LS), number of graphene layers, solvent and GBMs' concentration, microbial shape and size, aggregation ability of GBMs, and especially the mechanisms of interaction between composites and microbes are discussed in detail. The current and potential applications of these antimicrobial materials, especially in dentistry, osseointegration, and food packaging, have been described. This knowledge can further drive research that aims to look for the most suitable components for antimicrobial composites. The need for antimicrobial materials has seldom been more felt than during the COVID-19 pandemic, which has also been highlighted here. Possible future research areas include the exploration of GBMs' ability against algae.


Subject(s)
Anti-Infective Agents , COVID-19 , Graphite , Humans , Graphite/pharmacology , Graphite/chemistry , Pandemics , Anti-Infective Agents/pharmacology
2.
J Hazard Mater ; 418: 126399, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34329040

ABSTRACT

Plant secondary metabolites are emerging as attractive alternatives in the development of therapeutics against infectious and chronic diseases. Due to the present pandemic, therapeutics showing toxicity against bacterial pathogens and viruses are gaining interest. Plant metabolites of terpenoid and phenylpropanoid categories have known antibacterial and antiviral properties. These metabolites have also been associated with toxicity to eukaryotic cells in terms of carcinogenicity, hepatotoxicity, and neurotoxicity. Sensing methods that can report the exact antibacterial dosage, formation, and accumulation of these antibacterial compounds are needed. The whole-cell reporters for such antibacterial metabolites are cost-effective and easy to maintain. In the present study, battery of toxicity sensors containing fluorescent transcriptional bioreporters was constructed, followed by fine-tuning the response using gene-debilitated E. coli mutants. This study shows that by combining regulatory switches with chemical genetics strategy, it may be possible to detect and elucidate the mode of action of effective antibacterial plant secondary metabolites - thymol, cinnamaldehyde, eugenol, and carvacrol in both pure and complex formats. Apart from the detection of adulteration of pure compounds present in complex mixture of essential oils, this approach will be useful to detect authenticity of essential oils and thus reduce unintended harmful effects on human and animal health.


Subject(s)
Escherichia coli , Oils, Volatile , Animals , Anti-Bacterial Agents/toxicity , Bacteria/genetics , Escherichia coli/genetics , Eugenol , Humans , Microbial Sensitivity Tests , Thymol
3.
Anal Chem ; 93(10): 4521-4527, 2021 03 16.
Article in English | MEDLINE | ID: mdl-33655752

ABSTRACT

Clinicians require simple quantitative tools for the detection of homogentisic acid in alkaptonuria patients, a rare inherited disorder of amino acid metabolism. In this study, we report a whole-cell biosensor for homogentisic acid to detect alkaptonuria disease through the expression of green fluorescence protein. The assay system utilizes a promoter sequence (hmgA) isolated from the Pseudomonas aeruginosa genome. To increase the sensitivity, the sensor module harboring phmgA::GFP was further transformed into various transposon mutants debilitated in steps involved in the metabolism of phenylalanine and tyrosine via homogentisic acid as a central intermediate. The proposed biosensor was further checked for analytical features such as sensitivity, selectivity, linearity, and precision for the quantification of homogentisic acid in spiked urine samples. The limit of detection for the developed biosensor was calculated to be 3.9 µM, which is comparable to that of the various analytical techniques currently in use. The sensor construct showed no interference from all of the amino acids and its homolog molecules. The accuracy and precision of the proposed biosensor were validated using high-performance liquid chromatography (HPLC) with satisfactory results.


Subject(s)
Alkaptonuria , Biosensing Techniques , Alkaptonuria/diagnosis , Alkaptonuria/genetics , Chromatography, High Pressure Liquid , Homogentisic Acid , Humans , Tyrosine
SELECTION OF CITATIONS
SEARCH DETAIL
...