Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 4684, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824184

ABSTRACT

Miniaturized passive fliers based on smart materials face challenges in precise control of shape-morphing for aerodynamics and contactless modulation of diverse gliding modes. Here, we present the optical control of gliding performances in azobenzene-crosslinked liquid crystal networks films through photochemical actuation, enabling reversible and bistable shape-morphing. First, an actuator film is integrated with additive constructs to form a rotating glider, inspired by the natural maple samara, surpassing natural counterparts in reversibly optical tuning of terminal velocity, rotational rate, and circling position. We demonstrate optical modulation dispersion of landing points for the photo-responsive microfliers indoors and outdoors. Secondly, we show the scalability of polymer film geometry for miniature gliders with similar light tunability. Thirdly, we extend the material platform to other three gliding modes: Javan cucumber seed-like glider, parachute and artificial dandelion seed. The findings pave the way for distributed microflier with contactless flight dynamics control.

2.
Soft Matter ; 20(3): 511-522, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38113054

ABSTRACT

Exploiting the interplay of anisotropic diamagnetic susceptibility of liquid crystalline monomers and site selective photopolymerization enables the fabrication of 3D freeforms with highly refined microstructures. Utilizing chain transfer agents in the mesogenic inks presents a pathway for broadly tuning the mechanical properties of liquid crystalline polymers and their response to stimuli. In particular, the combination of 1,4-benzenedimethanethiol and tetrabromomethane is shown to enable voxelated blueprinting of molecular order, while allowing for a modulation of the crosslink density and the mechanical properties. The formulation of these monomers allows for the resolution of the voxels to approach the limits set by the coherence lengths defined by the anchoring from surfaces. These compositions demonstrate the expected thermotropic responses while allowing for their functionalization with photochromic switches to elicit photomechanical responses. Actuation strains are shown to outstrip that accomplished with prior systems that did not access chain transfer agents to modulate the structure of the macromolecular network. Test cases of this system are shown to create freeform actuators that exploit the refined director patterns during high-resolution printing. These include topological defects, hierarchically-structured light responsive grippers, and biomimetic flyers whose flight dynamics can be actively modulated via irradiation with light.

3.
Soft Matter ; 19(45): 8764-8778, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37938345

ABSTRACT

Liquid crystalline elastomers (LCEs) are active materials that are of interest due to their programmable response to various external stimuli such as light and heat. When exposed to these stimuli, the anisotropy in the response of the material is governed by the nematic director, which is a continuum parameter that is defined as the average local orientation of the mesogens in the liquid crystal phase. This nematic director can be programmed to be heterogeneous in space, creating a vast design space that is useful for applications ranging from artificial ligaments to deployable structures to self-assembling mechanisms. Even when specialized to long and thin strips of LCEs - the focus of this work - the vast design space has required the use of numerical simulations to aid in experimental discovery. To mitigate the computational expense of full 3-d numerical simulations, several dimensionally-reduced rod and ribbon models have been developed for LCE strips, but these have not accounted for the possibility of initial transverse curvature, like carpenter's tape spring. Motivated by recent experiments showing that transversely-curved LCE strips display a rich variety of configurations, this work derives a dimensionally-reduced 1-d model for pre-curved LCE strips. The 1-d model is validated against full 3-d finite element calculations, and it is also shown to capture experimental observations, including tape-spring-like localizations, in activated LCE strips.

4.
Soft Matter ; 17(6): 1521-1529, 2021 Feb 19.
Article in English | MEDLINE | ID: mdl-33331368

ABSTRACT

The effect of chain extender structure and composition on the thermomechanical properties of liquid crystal elastomers (LCE) synthesized using thiol-acrylate Michael addition is presented. The intrinsic molecular stiffness of the thiol chain extender and its relative molar ratio to acrylate-based host mesogens determine the magnitudes of the thermomechanical strains, temperatures at which they are realized and the mechanical work-content. A non-linear structure-property relationship emerges, wherein higher concentrations of flexible extenders first magnify the thermomechanical sensitivity, but a continued increase leads to weaker actuation. Understanding this interplay leads to a composite material platform, enabling a peak specific work production of ∼2 J kg-1 using ∼115 mW of electrical power supplied at 2 V. Composites of LCE with eGaIn liquid metal (LM) are prepared, which act as heaters, while being capable of actuation themselves. The thermomechanically active electrodes convert the electrical power into Joule heat, which they efficiently couple with the neat LCE to which they are bound. This system harnesses the nascent responsiveness of the LCE using electrodes that work with them, instead of fighting against them (or passively standing in the way). Specific work generated increases when subjected to increasing levels of load, reaching a peak at loads ∼260× the actuator weight. These ideas are extended to tri-layered actuators, where LCE films with orthogonal molecular orientations sandwich LCE-LM composite heaters. Torsional actuation modes are harnessed to twist under load.

5.
Soft Matter ; 17(5): 1258-1266, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33283820

ABSTRACT

Contactless actuation powered using light is shown to generate torque densities approaching 10 N m kg-1 at angular velocities ∼102 rad s-1: metrics that compare favorably against tethered electromechanical systems. This is possible even though the extinction of actinic light limits the characteristic thickness of photoresponse in polymers to tens of µm. Confinement of molecularly patterned developable shells fabricated from azobenzene-functionalized liquid crystalline polymers encodes torque-dense photoactuation. Photostrain gradients from unstructured irradiation segment this geometry into two oppositely curved regions connected by a curved crease. A monolithic curved shell spontaneously bifurcates into a jointed, arm-like mechanism that generates flexure over sweep angles exceeding a radian. Strain focusing at the crease is hierarchical: an integral crease nucleates at smaller magnitudes of the prebiased curvature, while a crease decorated with point-like defects emerges at larger curvatures. The phase-space of morphogenesis is traceable to the competition between stretch and bending energies and is parameterizable as a function of the geometry. The framework for generating repetitive torque-dense actuation from slender light-powered actuators holds broader implications for the design of soft, remotely operated machines. Here, it is harnessed in illustrative mechanisms including levers, lifters and grabbers that are powered and regulated exclusively using light.

6.
ACS Appl Mater Interfaces ; 11(31): 28236-28245, 2019 Aug 07.
Article in English | MEDLINE | ID: mdl-31307189

ABSTRACT

The ability to pattern material response, voxel by voxel, to direct actuation and manipulation in macroscopic structures can enable devices that utilize ambient stimuli to produce functional responses at length scales ranging from the micro- to the macroscopic. Fabricating liquid crystalline polymers (LCPs), where the molecular director is indexably defined in three-dimensional (3D) freeforms, can be a key enabler. Here, the combination of anisotropic magnetic susceptibility of the liquid crystalline monomers in a reorientable magnetic field and spatially selective photopolymerization using a digital micromirror device to independently define molecular orientation in light and/or heat-responsive multimaterial elements, which are additively incorporated into 3D freeforms, is exploited. This is shown to enable structural complexity across length scales in nontrivial geometries, including re-entrant shapes, which are responsive to either heat or light. A range of monomer compositions are optimized to include photoinitiators, light absorbers, and polymerization inhibitors to modulate the polymerization characteristics while simultaneously retaining the tailorability of the nematic alignment. The versatility of this framework is illustrated in an array of examples, including (i) thermomechanical generation of Gaussian-curved structures from flat geometries, (ii) light-responsive freeform topographies, and (iii) multiresponsive manipulators, which can be powered along independent axes using heat and/or light. The ability to integrate responses to multiple stimuli, where the principal directions of the mechanical output are arbitrarily tailored in a 3D freeform, enables new design spaces in soft robotics, micromechanical/fluidic systems, and optomechanical systems.

7.
ACS Appl Mater Interfaces ; 9(42): 37332-37339, 2017 Oct 25.
Article in English | MEDLINE | ID: mdl-28967260

ABSTRACT

Three-dimensional structures capable of reversible changes in shape, i.e., four-dimensional-printed structures, may enable new generations of soft robotics, implantable medical devices, and consumer products. Here, thermally responsive liquid crystal elastomers (LCEs) are direct-write printed into 3D structures with a controlled molecular order. Molecular order is locally programmed by controlling the print path used to build the 3D object, and this order controls the stimulus response. Each aligned LCE filament undergoes 40% reversible contraction along the print direction on heating. By printing objects with controlled geometry and stimulus response, magnified shape transformations, for example, volumetric contractions or rapid, repetitive snap-through transitions, are realized.

8.
Nat Commun ; 7: 13260, 2016 11 10.
Article in English | MEDLINE | ID: mdl-27830707

ABSTRACT

Light is distinguished as a contactless energy source for microscale devices as it can be directed from remote distances, rapidly turned on or off, spatially modulated across length scales, polarized, or varied in intensity. Motivated in part by these nascent properties of light, transducing photonic stimuli into macroscopic deformation of materials systems has been examined in the last half-century. Here we report photoinduced motion (photomotility) in monolithic polymer films prepared from azobenzene-functionalized liquid crystalline polymer networks (azo-LCNs). Leveraging the twisted-nematic orientation, irradiation with broad spectrum ultraviolet-visible light (320-500 nm) transforms the films from flat sheets to spiral ribbons, which subsequently translate large distances with continuous irradiation on an arbitrary surface. The motion results from a complex interplay of photochemistry and mechanics. We demonstrate directional control, as well as climbing.

9.
Proc Natl Acad Sci U S A ; 110(47): 18792-7, 2013 Nov 19.
Article in English | MEDLINE | ID: mdl-24190994

ABSTRACT

Photomechanical effects in polymeric materials and composites transduce light into mechanical work. The ability to control the intensity, polarization, placement, and duration of light irradiation is a distinctive and potentially useful tool to tailor the location, magnitude, and directionality of photogenerated mechanical work. Unfortunately, the work generated from photoresponsive materials is often slow and yields very small power densities, which diminish their potential use in applications. Here, we investigate photoinitiated snap-through in bistable arches formed from samples composed of azobenzene-functionalized polymers (both amorphous polyimides and liquid crystal polymer networks) and report orders-of-magnitude enhancement in actuation rates (approaching 10(2) mm/s) and powers (as much as 1 kW/m(3)). The contactless, ultra-fast actuation is observed at irradiation intensities <<100 mW/cm(2). Due to the bistability and symmetry of the snap-through, reversible and bidirectional actuation is demonstrated. A model is developed to elucidate the underlying mechanics of the snap-through, specifically focusing on isolating the role of sample geometry, mechanical properties of the materials, and photomechanical strain. Using light to trigger contactless, ultrafast actuation in an otherwise passive structure is a potentially versatile tool to use in mechanical design at the micro-, meso-, and millimeter scales as actuators, as well as switches that can be triggered from large standoff distances, impulse generators for microvehicles, microfluidic valves and mixers in laboratory-on-chip devices, and adaptive optical elements.


Subject(s)
Azo Compounds/chemistry , Engineering/methods , Models, Chemical , Photochemistry/methods , Polymers/chemistry , Polymers/chemical synthesis , Ultraviolet Rays , Liquid Crystals/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...